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Abstract

Snarks are bridgeless cubic graphs with chromatic index χ′ = 4. A
snark G is called critical if χ′(G − {v, w}) = 3, for any two adjacent
vertices v and w.

For any k ≥ 2 we construct cyclically 5-edge connected critical
snarks G having an independent set I of at least k vertices such that
χ′(G − I) = 4.

For k = 2 this solves a problem of Nedela and Škoviera [6].
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1. Introduction

A snark is a bridgeless cubic graph with chromatic index χ′ = 4. The
study of the reduction of snarks is as old as the study of these graphs itself.
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6 S. Grünewald and E. Steffen

For a detailed introduction to this topic we refer the reader to one of [3, 5,
6, 7, 10, 12, 13]. This note deals with a reduction of snarks introduced by
Nedela and Škoviera in [6].

Let G be a snark and let F ⊂ E(G) be a k-edge cut (k ≥ 0) whose
removal divides G into two components H1 and H2. If the chromatic index
of one of the components is 4, say χ′(H1) = 4, then H1 can be extended
to a snark H with |V (H)| ≤ |V (G)| by adding edges and probably vertices.
Graph H is called a k-reduction of G. If |V (H)| < |V (G)|, then H is called
a proper k-reduction of G.

A snark is called k-irreducible if it has no proper m-reduction such that
m < k, and it is called irreducible if it is k-irreducible for each k ≥ 1.

A snark G is called critical if χ′(G − {v, w}) = 3 for any two adjacent
vertices v, w ∈ V (G), it is called cocritical if χ′(G − {v, w}) = 3 for any two
non-adjacent vertices v, w ∈ V (G), and it is called bicritical if it is critical
and cocritical.

Nedela and Škoviera proved the following characterizations.

Theorem 1.1 [6]. Let G be a snark. Then the following statements hold

true.

1. If 5 ≤ k ≤ 6, then G is k-irreducible if and only if it is critical.

2. If k ≥ 7, then G is k-irreducible if and only if it is bicritical.

Finally, it turns out that

Theorem 1.2 [6]. A snark is irreducible if and only if it is bicritical.

In [2] it is shown that there are cocritical snarks which are not critical,
and that there are snarks which are neither critical nor cocritical. Further,
each critical snark on less than 30 vertices is bicritical and henceforth it is
irreducible. Nedela and Škoviera [6] state the following problem.

Problem 1.3 [6]. Does there exist a snark that is critical but not bicritical?

Equivalently, does there exist a 6-irreducible snark that is not irreducible?

The answer is “yes”. In [9] the latter author constructed infinite families
of cyclically 4-edge connected critical snarks which are not bicritical. The
smallest one has 32 vertices. M. Škoviera [8] found another infinite family of
cyclically 4-edge connected snarks with these properties by using a different
method.
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In this note, we improve these results in two directions. We construct cycli-
cally 5-edge connected critical snarks with the property that they have a
large independent set of vertices whose removal does not yield an edge
3-colorable graph. Clearly, these graphs are not bicritical.

2. The Main Theorem

We will use the following lemma, due to Blanus̆a [1].

Lemma 2.1. (Parity Lemma) Let M be a multigraph whose edges are col-

ored with colors 1, . . . , k, and let ai be the number of vertices v in M such

that no edge incident to v is colored i. Then for all i = 1, . . . , k : ai ≡ |V (M)|
(mod 2).

Proof. For i = 1, . . . k let Ei be the set of edges colored i. Then ai =
|V (M)| − 2|Ei|, and hence ai ≡ |V (M)| (mod 2).

Theorem 2.2. For each k ≥ 1 there is a cyclically 5-edge connected critical

snark that has an independent set I of 2k+1 vertices such that χ′(G−I) = 4.

Proof. The idea of the construction is as follows. Let k ≥ 1 be fixed. We
construct a multigraph Mk and specify three closed walks in this multigraph.
We replace vertices of Mk by well specified graphs to obtain a cubic graph
Gk. We show that Gk is cyclically 5-edge connected and that it is a snark.
Furthermore, each of the walks in Mk can be extended to circuits in Gk

to obtain a 2-factor of Gk with precisely two odd circuits. We then show
that for each edge e = vw in Gk there is a 2-factor of Gk with precisely
two odd circuits which are connected by e. If this is true, then Gk has an
edge 4-coloring with a color class consisting of precisely two edges, one of
them incident to v and the other incident to w. Thus Gk − {v, w} is edge
3-colorable. Hence Gk is critical.

Construction

Let k ≥ 1 be fixed and I = {w0, w1, . . . , w2k}. Define Mk to be the multi-
graph with vertex set ZZ3(2k+1) ∪ I, and for each i ∈ ZZ3(2k+1) vertex i is
joined to vertex i + 1 by two parallel edges, e(i, i + 1) and f(i, i + 1), and
by one edge with wm ∈ I if i ≡ m (mod 2k + 1). We call the elements of
ZZ3(2k+1) the outer vertices of Mk. Multigraph M1 is shown in Figure 1.
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Figure 1. Multigraph M1

For k ≥ 1 the circuits Pe, Pf and the walk Q in Mk are defined as follows:
Let 2k + 1 = K,

Pe = e(0, 1), e(1, w1), e(w1,K + 1), e(K + 1,K + 2), e(K + 2, w2), e(w2, 2),
e(2, 3), . . ., e(2K − 1, wK−1), e(wK−1,K − 1), e(K − 1,K), e(K,w0), e(w0, 0).

Pf = f(0, 1), e(1, w1), e(w1,K + 1), f(K + 1,K + 2), e(K + 2, w2), e(w2, 2),
f(2, 3), . . ., e(2K−1, wK−1), e(wK−1,K−1), f(K−1,K), e(K,w0), e(w0, 0).

Q = e(2K − 1, 2K), e(2K, 2K + 1), e(2K + 1, 2K + 2), . . ., e(3K − 1, 0),
f(0, 3K − 1), f(3K − 1, 3K − 2), . . ., f(2K, 2K − 1).

The 7-block Bi (i ∈ ZZ3(2k+1)) is the graph obtained from a cycle C6 on the
vertices vi

0, v
i
1, . . . , v

i
5 by adding a vertex vi

6 and edges vi
1v

i
6 and vi

4v
i
6.

For each k ≥ 1 construct the cubic graph Gk as follows:
For each i ∈ ZZ3(2k+1) take block Bi and vertices w0, . . . , w2k, add edges

vi
0v

i+1
5 , vi

3v
i+1
2 and for 0 ≤ j ≤ 2k add edges wjv

n
6 if n ≡ j (mod 2k + 1).

If we contract each subgraph B i to a single vertex i, we obtain multi-
graph Mk. For the following we may assume that the edges vi

0v
i+1
5 and

vi
3v

i+1
2 of Gk are denoted by e(i, i + 1) and f(i, i + 1) in the contracted

graph, respectively. Vice versa Gk can be obtained from Mk by successively
replacing the outer vertices by 7-blocks. A fact which we will use in the
following.



Cyclically 5-edge Connected Non-Bicritical ... 9

Claim 2.2.1. Gk is a cyclically 5-edge connected snark, that has an inde-

pendent set I of 2k + 1 vertices such that Gk − I is not edge 3-colorable.

Proof. A 7-block Bi is obtained from the Petersen graph by removing
three vertices of a path of length 2. Therefore it follows from Lemma 2.1
that for each 3-coloring of Bi the same colors are missing at vi

0 and vi
3 and

two different colors are missing at vi
2 and vi

5 or vice versa. Thus Gk − I

cannot be edge 3-colorable.

Since between any two outer vertices of Mk there are five edge disjoint
paths and since no 5-circuit of B i can be separated by removing less than
five edges from Gk, it follows that Gk is cyclically 5-edge connected.

Claim 2.2.2. Gk is critical.

Proof. We have to show that for each edge vw = e ∈ E(Gk) there is a
2-factor Fe of Gk with precisely two odd circuits which are connected by e.

We reconstruct Gk from Mk by successively replacing outer vertices of
Mk by the 7-blocks. We show that the circuits Pe, Pf and the walk Q can
be extended to circuits of the new graphs. Eventually (after replacing all
outer vertices of Mk), we obtain a spanning 2-factor of Gk with precisely
two odd circuits.

In Gk we have basically the following types of edges:

vi
0v

i
1, vi

1v
i
2, vi

2v
i
3, vi

3v
i
4, vi

4v
i
5, vi

5v
i
0, vi

1v
i
6, vi

4v
i
6, vi

0v
i+1
5 , vi

3v
i+1
2 , and vi

6wl (where
i ≡ l (mod 2k + 1)).

We have V (Mk) = ZZ3(2k+1) ∪ {w0, . . . , w2k}, and we define for j =
1, . . . , 3(2k + 1) − 1 the function fj : V (Mk) → V (Mk) with fj(i) = i + j if
i ∈ ZZ3(2k+1) and fj(wk) = wk+j, where the indices are added modulo 2k+1.
This function is an automorphism on Mk.

Thus the aforementioned construction can be applied on Mk where ver-
tices v are labeled by fj(v), for each j = 1, . . . , 3(2k + 1) − 1. Hence it
suffices to show that for each edge type there is a 2-factor of Gk containing
precisely two odd circuits connected by at least one edge of that type.

It is easy to see that there are hamiltonian paths in B i with terminal
vertices vi

0, vi
6 and vi

5, vi
6 and vi

2, vi
6 and vi

3, vi
6, respectively.

Then, if for 1 ≤ i ≤ 2(2k+1)−2 vertex i of Mk is replaced by Bi circuits,
Pe and Pf can be extended to circuits of the new graph, respectively.

Paths vi
2, v

i
1, v

i
6, v

i
4, v

i
3 and vi

0, v
i
5 span Bi. Then, if for 0 ≤ l ≤ 2k vertex

2(2k + 1) + l of Mk is replaced by B2(2k+1)+l, the walk Q can be extended
to a circuit of the new graph.
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Let G−

k be the graph obtained from Mk by replacing all degree 5 vertices
but 0 and 2(2k+1)−1. To show that Gk is critical we consider the following
cases: Let s = 2(2k + 1) − 1.

Case 1. We consider the extended circuit Pe and the extended walk Q

in G−

k .

Replace vertices 0 and s by B0 and Bs, respectively. In B0 extend Pe

by the path v0
0, v

0
1 , v0

6 , and Q by the path v0
2 , v

0
3 , v

0
4 , v

0
5 . In Bs extend Pe by

the path vs
5, v

s
4, v

s
6, and Q by the path vs

0, v
s
1, v

s
2, v

s
3 to obtain two disjoint

spanning circuits P ∗ and Q∗ of odd length which form a 2-factor of Gk.

These two odd circuits are connected by edges v0
0v

0
5 , v0

1v
0
2, v0

4v
0
6, vs

1v
s
6,

vs
3v

s
4, vs−1

3 vs
2 and by edges vs+1+l

6 wl for 0 ≤ l ≤ 2k

Case 2. We consider the extended circuit Pf and the extended walk Q

in G−

k .

Let vertices 0 and s be replaced by B0 and Bs, respectively. In B0

extend Pf by the path v0
3, v

0
4 , v

0
6 and Q by the path v0

2 , v
0
1 , v

0
0 , v

0
5 . In Bs

extend Pf by the path vs
2, v

s
1, v

s
6, and Q by vs

0, v
s
5, v

s
4, v

s
3. As in case 1 we

obtain two disjoint spanning circuits P ∗ and Q∗ of odd length which form
a 2-factor of Gk. These two circuits are connected by v0

2v
0
3 , v0

4v
0
5 , vs

0v
s
1 and

vs−1
0 vs

5.

Flower snark J2k+1 (cf. [5]) has vertex set V (J2k+1) = {ai, bi, ci, di|i =
1, 2, . . . , 2k+1} and edge set E(J2k+1) = {biai, bici, bidi; aiai+1; cidi+1; dici+1|
i = 1, 2, . . . , 2k+1}. The above construction can also be carried out by using
copies of J7 −{a1, a2, a7} instead of the Bi’s. This yields a cyclically 5-edge
connected snark Hk with girth 6. By the same argumentation as above, it
follows that Hk is critical and that χ′(Hk − I) = 4, for each k ≥ 1. Because
the proof is long and tedious we omit it here and state:

Theorem 2.3. For any k ≥ 1 there are cyclically 5-edge connected critical

snarks with girth 6 having an independent set of 2k+1 vertices whose removal

does not yield an edge 3-colorable graph.
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