ArticleOriginal scientific text

Title

Equivalent classes for K₃-gluings of wheels

Authors 1

Affiliations

  1. Institute of Mathematics, M. Curie-Skłodowska University

Abstract

In this paper, the chromaticity of K₃-gluings of two wheels is studied. For each even integer n ≥ 6 and each odd integer 3 ≤ q ≤ [n/2] all K₃-gluings of wheels Wq+2 and Wn-q+2 create an χ-equivalent class.

Keywords

chromatically equivalent graphs, chromatic polynomial, chromatically unique graphs, wheels

Bibliography

  1. C.Y. Chao and E.G.Whitehead, Jr., On chromatic equivalence of graphs, in: Y. Alavi and D.R. Lick, eds., Theory and Applications of Graphs, Lecture Notes in Math. 642 (Springer, Berlin, 1978) 121-131, doi: 10.1007/BFb0070369.
  2. C.Y. Chao and E.G. Whitehead, Jr., Chromatically unique graphs, Discrete Math. 27 (1979) 171-177, doi: 10.1016/0012-365X(79)90107-9.
  3. F. Harary, Graph Theory (Reading, 1969).
  4. K.M. Koh and B.H. Goh, Two classes of chromatically unique graphs, Discrete Math. 82 (1990) 13-24, doi: 10.1016/0012-365X(90)90041-F.
  5. K.M. Koh and C.P. Teo, The search for chromatically unique graphs, Graphs and Combinatorics 6 (1990) 259-285, doi: 10.1007/BF01787578.
  6. K.M. Koh and C.P. Teo, The chromatic uniqueness of certain broken wheels, Discrete Math. 96 (1991) 65-69, doi: 10.1016/0012-365X(91)90471-D.
  7. B. Loerinc, Chromatic uniqueness of the generalized θ-graph, Discrete Math. 23 (1978) 313-316, doi: 10.1016/0012-365X(78)90012-2.
  8. R.C. Read, An introduction to chromatic polynomials, J. Combin. Theory 4 (1968) 52-71, doi: 10.1016/S0021-9800(68)80087-0.
  9. S-J. Xu and N-Z. Li, The chromaticity of wheels, Discrete Math. 51 (1984)207-212, doi: 10.1016/0012-365X(84)90072-4.
Pages:
73-84
Main language of publication
English
Received
1997-04-18
Accepted
1997-08-28
Published
1998
Exact and natural sciences