PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
1998 | 18 | 1 | 23-48
Tytuł artykułu

The leafage of a chordal graph

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The leafage l(G) of a chordal graph G is the minimum number of leaves of a tree in which G has an intersection representation by subtrees. We obtain upper and lower bounds on l(G) and compute it on special classes. The maximum of l(G) on n-vertex graphs is n - lg n - 1/2 lg lg n + O(1). The proper leafage l*(G) is the minimum number of leaves when no subtree may contain another; we obtain upper and lower bounds on l*(G). Leafage equals proper leafage on claw-free chordal graphs. We use asteroidal sets and structural properties of chordal graphs.
Wydawca
Rocznik
Tom
18
Numer
1
Strony
23-48
Opis fizyczny
Daty
wydano
1998
otrzymano
1997-01-02
poprawiono
1998-04-19
Twórcy
autor
  • National Ocean University, Taipei, Taiwan
  • Wright State University, Dayton, OH 45435-0001, U.S.A
  • University of Illinois, Urbana, IL 61801-2975, U.S.A.
Bibliografia
  • [1] H. Broersma, T. Kloks, D. Kratsch and H. Müller, Independent sets in asteroidal triple-free graphs, in: Proceedings of ICALP'97, P. Degano, R. Gorrieri, A. Marchetti-Spaccamela, (eds.), (Springer-Verlag, 1997), Lect. Notes Comp. Sci. 1256, 760-770.
  • [2] H. Broersma, T. Kloks, D. Kratsch and H. Müller, A generalization of AT-free graphs and a generic algorithm for solving triangulation problems, Memorandum No. 1385, University of Twente, Enschede, The Netherlands, 1997.
  • [3] P.A. Buneman, A characterization of rigid circuit graphs, Discrete Math. 9 (1974) 205-212, doi: 10.1016/0012-365X(74)90002-8.
  • [4] R.P. Dilworth, A decomposition theorem for partially ordered sets, Ann. Math. 51 (1950) 161-166, doi: 10.2307/1969503.
  • [5] R.P. Dilworth, Some combinatorial problems on partially ordered sets, in: Combinatorial Analysis (Bellman and Hall, eds.) Proc. Symp. Appl. Math. (Amer. Math. Soc 1960), 85-90.
  • [6] G.A. Dirac, On rigid circuit graphs, Abh. Math. Sem. Univ. Hamburg 25 (1961) 71-76, doi: 10.1007/BF02992776.
  • [7] D.R. Fulkerson and O.A. Gross, Incidence matrices and interval graphs, Pac. J. Math. 15 (1965) 835-855.
  • [8] F. Gavril, The intersection graphs of subtrees in trees are exactly the chordal graphs, J. Combin. Theory (B) 16 (1974) 47-56, doi: 10.1016/0095-8956(74)90094-X.
  • [9] F. Gavril, Generating the maximum spanning trees of a weighted graph, J. Algorithms 8 (1987) 592-597, doi: 10.1016/0196-6774(87)90053-8.
  • [10] P.C. Gilmore and A.J. Hoffman, A characterization of comparability graphs and of interval graphs, Canad. J. Math. 16 (1964) 539-548, doi: 10.4153/CJM-1964-055-5.
  • [11] M.C. Golumbic, Algorithmic Graph Theory and Perfect Graphs (Academic Press, 1980).
  • [12] T. Kloks, D. Kratsch and H. Müller, Asteroidal sets in graphs, in: Proceedings of WG'97, R. Möhring, (ed.), (Springer-Verlag, 1997) Lect. Notes Comp. Sci. 1335, 229-241.
  • [13] T. Kloks, D. Kratsch and H. Müller, On the structure of graphs with bounded asteroidal number, Forschungsergebnisse Math/Inf/97/22, FSU Jena, Germany, 1997.
  • [14] B. Leclerc, Arbres et dimension des ordres, Discrete Math. 14 (1976) 69-76, doi: 10.1016/0012-365X(76)90007-8.
  • [15] C.B. Lekkerkerker and J.Ch. Boland, Representation of a finite graph by a set of intervals on the real line, Fund. Math. 51 (1962) 45-64.
  • [16] I.-J. Lin, M.K. Sen and D.B. West, Leafage of directed graphs, to appear.
  • [17] T.A. McKee, Subtree catch graphs, Congr. Numer. 90 (1992) 231-238.
  • [18] E. Prisner, Representing triangulated graphs in stars, Abh. Math. Sem. Univ. Hamburg 62 (1992) 29-41, doi: 10.1007/BF02941616.
  • [19] F.S. Roberts, Indifference graphs, in: Proof Techniques in Graph Theory (F. Harary, ed.), Academic Press (1969) 139-146.
  • [20] D.J. Rose, Triangulated graphs and the elimination process, J. Math. Ann. Appl. 32 (1970) 597-609, doi: 10.1016/0022-247X(70)90282-9.
  • [21] D.J. Rose, R.E. Tarjan and G.S. Leuker, Algorithmic aspects of vertex elimination on graphs, SIAM J. Comp. 5 (1976) 266-283, doi: 10.1137/0205021.
  • [22] Y. Shibata, On the tree representation of chordal graphs, J. Graph Theory 12 (1988) 421-428, doi: 10.1002/jgt.3190120313.
  • [23] J.R. Walter, Representations of chordal graphs as subtrees of a tree, J. Graph Theory 2 (1978) 265-267, doi: 10.1002/jgt.3190020311.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1061
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.