PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
1998 | 18 | 1 | 5-13
Tytuł artykułu

Long cycles and neighborhood union in 1-tough graphs with large degree sums

Autorzy
Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
For a 1-tough graph G we define σ₃(G) = min{d(u) + d(v) + d(w):{u,v,w} is an independent set of vertices} and $NC_{σ₃-n+5}(G)$ = $max{⋃_{i = 1}^{σ₃-n+5}$ $N(v_i) : {v₁, ..., v_{σ₃-n+5}}$ is an independent set of vertices}. We show that every 1-tough graph with σ₃(G) ≥ n contains a cycle of length at least $min{n,2NC_{σ₃-n+5}(G)+2}$. This result implies some well-known results of Faßbender [2] and of Flandrin, Jung & Li [6]. The main result of this paper also implies that c(G) ≥ min{n,2NC₂(G)+2} where NC₂(G) = min{|N(u) ∪ N(v)|:d(u,v) = 2}. This strengthens a result that c(G) ≥ min{n, 2NC₂(G)} of Bauer, Fan and Veldman [3].
Słowa kluczowe
Wydawca
Rocznik
Tom
18
Numer
1
Strony
5-13
Opis fizyczny
Daty
wydano
1998
otrzymano
1994-09-23
poprawiono
1996-11-27
Twórcy
autor
  • Wundtstr. 7/4L1, 01217 Dresden, Germany
Bibliografia
  • [1] A. Bigalke and H.A. Jung, Über Hamiltonsche Kreise und unabhängige Ecken in Graphen, Monatsh. Mathematics 88 (1979) 195-210, doi: 10.1007/BF01295234.
  • [2] B. Faß, A sufficient condition on degree sums of independent triples for hamiltonian cycles in 1-tough graphs, Ars Combinatoria 33 (1992) 300-304.
  • [3] D. Bauer, A. Morgana, E. Schmeichel and H.J. Veldman, Long cycles in graphs with large degree sums, Discrete Mathematics 79 (1989/90) 59-70, doi: 10.1016/0012-365X(90)90055-M.
  • [4] D. Bauer, H.J. Broersma and H.J. Veldman, Around three lemmas in hamiltonian graph theory, in: R. Bodendiek and R. Henn, eds., Topics in Combinatorics and Graph Theory. Festschrift in honour of Gerhard Ringel, Physica-Verlag, Heidelberg (1990) 101-110.
  • [5] D. Bauer, G. Fan and H.J. Veldman, Hamiltonian properties of graphs with large neighborhood unions, Discrete Mathematics 96 (1991) 33-49, doi: 10.1016/0012-365X(91)90468-H.
  • [6] E. Flandrin, H.A. Jung and H. Li, Hamiltonism, degree sum and neighborhood intersections, Discrete Mathematics 90 (1991) 41-52, doi: 10.1016/0012-365X(91)90094-I.
  • [7] H.J. Broersma, J. Van den Heuvel and H.J. Veldman, Long Cycles, Degree sums and Neighborhood Unions, Discrete Mathematics 121 (1993) 25-35, doi: 10.1016/0012-365X(93)90534-Z.
  • [8] J. Van den Heuvel, Degree and Toughness Condition for Cycles in Graphs, Thesis (1994) University of Twente, Enschede Niederland.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1059
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.