ArticleOriginal scientific text

Title

Localization of jumps of the point-distinguishing chromatic index of !$!K_{n,n}

Authors 1, 1

Affiliations

  1. Department of Geometry and Algebra, P. J. Šafárik University

Abstract

The point-distinguishing chromatic index of a graph represents the minimum number of colours in its edge colouring such that each vertex is distinguished by the set of colours of edges incident with it. Asymptotic information on jumps of the point-distinguishing chromatic index of Kn,n is found.

Keywords

Point-distinguishing chromatic index, colour set, complete equibipartite graph

Bibliography

  1. K. Al-Wahabi, R. Bari, F. Harary and D. Ullman, The edge-distinguishing chromatic number of paths and cycles, Annals of Discrete Math. 41 (1989) 17-22, doi: 10.1016/S0167-5060(08)70446-1.
  2. D.G. Beane, N.L. Biggs and B.J. Wilson, The growth rate of the harmonious chromatic number, J. Graph Theory 13 (1989) 291-298, doi: 10.1002/jgt.3190130304.
  3. A.C. Burris and R.H. Schelp, Vertex-distinguishing proper edge-colorings, J. Graph Theory (to appear).
  4. J. Cerný, M. Hor nák and R. Soták, Observability of a graph, Math. Slovaca 46 (1996) 21-31.
  5. O. Favaron and R.H. Schelp, Strong edge colorings of graphs, Discrete Math. (to appear).
  6. O. Frank, F. Harary and M. Plantholt, The line-distinguishing chromatic number of a graph, Ars Combin. 14 (1982) 241-252.
  7. F. Harary and M. Plantholt, The point-distinguishing chromatic index, in: F. Harary and J.S. Maybee, eds., Graphs and Applications (Wiley-Interscience, New York 1985) 147-162.
  8. J.E. Hopcroft and M.S. Krishnamoorthy, On the harmonious coloring of graphs, SIAM J. Alg. Discrete Meth. 4 (1983) 306-311, doi: 10.1137/0604032.
  9. M. Horňák and R. Soták, Observability of complete multipartite graphs with equipotent parts, Ars Combin. 41 (1995) 289-301.
  10. M. Horňák and R. Soták, The fifth jump of the point-distinguishing chromatic index of Kn,n, Ars Combin. 42 (1996) 233-242.
  11. M. Horňák and R. Soták, Asymptotic behaviour of the observability of Qₙ, Discrete Math. (to appear).
  12. Sin-Min Lee and J. Mitchem, An upper bound for the harmonious chromatic number of a graph, J. Graph Theory 12 (1987) 565-567.
  13. Z. Miller and D. Pritikin, The harmonious coloring number of a graph, Congr. Numer. 63 (1988) 213-228.
  14. N. Zagaglia Salvi, On the the point-distinguishing chromatic index of Kn,n, Ars Combin. 25 (B) (1988) 93-104.
  15. N. Zagaglia Salvi, On the value of the point-distinguishing chromatic index of Kn,n, Ars Combin. 29 (B) (1990) 235-244.
Pages:
243-251
Main language of publication
English
Received
1997-04-30
Published
1997
Exact and natural sciences