PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
1997 | 17 | 2 | 243-251
Tytuł artykułu

Localization of jumps of the point-distinguishing chromatic index of $K_{n,n}$

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The point-distinguishing chromatic index of a graph represents the minimum number of colours in its edge colouring such that each vertex is distinguished by the set of colours of edges incident with it. Asymptotic information on jumps of the point-distinguishing chromatic index of $K_{n,n}$ is found.
Wydawca
Rocznik
Tom
17
Numer
2
Strony
243-251
Opis fizyczny
Daty
wydano
1997
otrzymano
1997-04-30
Twórcy
  • Department of Geometry and Algebra, P. J. Šafárik University, Jesenná 5, 041 54 Košice, Slovakia
autor
  • Department of Geometry and Algebra, P. J. Šafárik University, Jesenná 5, 041 54 Košice, Slovakia
Bibliografia
  • [1] K. Al-Wahabi, R. Bari, F. Harary and D. Ullman, The edge-distinguishing chromatic number of paths and cycles, Annals of Discrete Math. 41 (1989) 17-22, doi: 10.1016/S0167-5060(08)70446-1.
  • [2] D.G. Beane, N.L. Biggs and B.J. Wilson, The growth rate of the harmonious chromatic number, J. Graph Theory 13 (1989) 291-298, doi: 10.1002/jgt.3190130304.
  • [3] A.C. Burris and R.H. Schelp, Vertex-distinguishing proper edge-colorings, J. Graph Theory (to appear).
  • [4] J. Cerný, M. Hor nák and R. Soták, Observability of a graph, Math. Slovaca 46 (1996) 21-31.
  • [5] O. Favaron and R.H. Schelp, Strong edge colorings of graphs, Discrete Math. (to appear).
  • [6] O. Frank, F. Harary and M. Plantholt, The line-distinguishing chromatic number of a graph, Ars Combin. 14 (1982) 241-252.
  • [7] F. Harary and M. Plantholt, The point-distinguishing chromatic index, in: F. Harary and J.S. Maybee, eds., Graphs and Applications (Wiley-Interscience, New York 1985) 147-162.
  • [8] J.E. Hopcroft and M.S. Krishnamoorthy, On the harmonious coloring of graphs, SIAM J. Alg. Discrete Meth. 4 (1983) 306-311, doi: 10.1137/0604032.
  • [9] M. Horňák and R. Soták, Observability of complete multipartite graphs with equipotent parts, Ars Combin. 41 (1995) 289-301.
  • [10] M. Horňák and R. Soták, The fifth jump of the point-distinguishing chromatic index of $K_{n,n}$, Ars Combin. 42 (1996) 233-242.
  • [11] M. Horňák and R. Soták, Asymptotic behaviour of the observability of Qₙ, Discrete Math. (to appear).
  • [12] Sin-Min Lee and J. Mitchem, An upper bound for the harmonious chromatic number of a graph, J. Graph Theory 12 (1987) 565-567.
  • [13] Z. Miller and D. Pritikin, The harmonious coloring number of a graph, Congr. Numer. 63 (1988) 213-228.
  • [14] N. Zagaglia Salvi, On the the point-distinguishing chromatic index of $K_{n,n}$, Ars Combin. 25 (B) (1988) 93-104.
  • [15] N. Zagaglia Salvi, On the value of the point-distinguishing chromatic index of $K_{n,n}$, Ars Combin. 29 (B) (1990) 235-244.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1051
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.