ArticleOriginal scientific text
Title
Generalized domination, independence and irredudance in graphs
Authors 1, 1, 1
Affiliations
- Institute of Mathematics, Technical University of Zielona Góra
Abstract
The purpose of this paper is to present some basic properties of -dominating, -independent, and -irredundant sets in graphs which generalize well-known properties of dominating, independent and irredundant sets, respectively.
Keywords
hereditary property of graphs, generalized domination, independence and irredundance numbers
Bibliography
- M. Borowiecki and P. Mihók, Hereditary Properties of Graphs, in: Advances in Graph Theory (Vishwa Inter. Publications, 1991) 41-68.
- E.J. Cockayne and S.T. Hedetniemi, Independence graphs, in: Proc. 5th Southeast Conf. Combinatorics, Graph Theory and Computing, Utilitas Mathematica (Winnepeg, 1974) 471-491.
- E.J. Cockayne, S.T. Hedetniemi and D.J. Miller, Properties of hereditary hypergraphs and middle graphs, Canad. Math. Bull. 21 (1978) 461-468, doi: 10.4153/CMB-1978-079-5.
- M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completness (W.H. Freeman, San Francisco, CA, 1979).
- M.A. Henning and H.C. Swart, Bounds on a generalized domination parameter, Quaestiones Math. 13 (1990) 237-253, doi: 10.1080/16073606.1990.9631615.
- O. Ore, Theory of Graphs (Amer. Math. Soc. Colloq. Publ. 38, Providence, R. I., 1962).