Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
1997 | 17 | 1 | 137-145

Tytuł artykułu

Generalized colorings and avoidable orientations

Treść / Zawartość

Języki publikacji

EN

Abstrakty

EN
Gallai and Roy proved that a graph is k-colorable if and only if it has an orientation without directed paths of length k. We initiate the study of analogous characterizations for the existence of generalized graph colorings, where each color class induces a subgraph satisfying a given (hereditary) property. It is shown that a graph is partitionable into at most k independent sets and one induced matching if and only if it admits an orientation containing no subdigraph from a family of k+3 directed graphs.

Słowa kluczowe

Wydawca

Rocznik

Tom

17

Numer

1

Strony

137-145

Daty

wydano
1997
otrzymano
1997-01-14

Twórcy

  • Mathematical Institute, University of Miskolc, H-3515 Miskolc-Egyetemváros, Hungary
autor
  • Computer and Automation Institute, Hungarian Academy of Sciences, H-1111 Budapest, Kende u. 13-17, Hungary

Bibliografia

  • [1] M. Borowiecki, I. Broere, M. Frick, P. Mihók and G. Semanišin, A survey of hereditary properties of graphs, Discussiones Mathematicae Graph Theory 17 (1997) 5-50, doi: 10.7151/dmgt.1037.
  • [2] J. Bucko, M. Frick, P. Mihók and R. Vasky, Uniquely partitionable graphs, Discussiones Mathematicae Graph Theory 17 (1997) 103-113, doi: 10.7151/dmgt.1043.
  • [3] Y. Caro, Private communication, 1989.
  • [4] T. Gallai, On directed paths and circuits, in: P. Erd os and G.O.H. Katona, eds., Theory of Graphs, Proc. Colloq. Math. Soc. János Bolyai, Tihany (Hungary) 1966 (Academic Press, San Diego, 1968) 115-118.
  • [5] P. Mihók, Additive hereditary properties and uniquely partitionable graphs, in: Graphs, Hypergraphs and Matroids (Zielona Góra, 1985) 49-58.
  • [6] G.J. Minty, A theorem on n-colouring the points of a linear graph, Amer. Math. Monthly 67 (1962) 623-624, doi: 10.2307/2310826.
  • [7] R. Roy, Nombre chromatique et plus longs chemins d'un graphe, Revue AFIRO 1 (1967) 127-132.
  • [8] Zs. Tuza, Graph coloring in linear time, J. Combin. Theory (B) 55 (1992) 236-243, doi: 10.1016/0095-8956(92)90042-V.
  • [9] Zs. Tuza, Chromatic numbers and orientations, Unpublished manuscript, February 1993.
  • [10] Zs. Tuza, Some remarks on the Gallai-Roy Theorem, in preparation.

Identyfikatory

Identyfikator YADDA

bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1047