ArticleOriginal scientific text
Title
On generalized list colourings of graphs
Authors 1, 2, 3
Affiliations
- Institute of Mathematics, Technical University of Zielona Góra
- Department of Mathematics, Rand Afrikaans University
- Mathematical Institute of Slovak Academy of Sciences
Abstract
Vizing [15] and Erdős et al. [8] independently introduce the idea of considering list-colouring and k-choosability. In the both papers the choosability version of Brooks' theorem [4] was proved but the choosability version of Gallai's theorem [9] was proved independently by Thomassen [14] and by Kostochka et al. [11]. In [3] some extensions of these two basic theorems to (,k)-choosability have been proved. In this paper we prove some extensions of the well-known bounds for the -chromatic number to the (,k)-choice number and then an extension of Brooks' theorem.
Keywords
hereditary property of graphs, list colouring, vertex partition number
Bibliography
- M. Borowiecki, I. Broere, M. Frick, P. Mihók and G. Semanišin, A survey of hereditary properties of graphs, Discussiones Mathematicae Graph Theory 17 (1997) 5-50, doi: 10.7151/dmgt.1037.
- M. Borowiecki and P. Mihók, Hereditary Properties of Graphs, in: Advances in Graph Theory (Vishwa International Publications, 1991) 41-68.
- M. Borowiecki, E. Drgas-Burchardt, Generalized list colourings of graphs, Discussiones Math. Graph Theory 15 (1995) 185-193, doi: 10.7151/dmgt.1016.
- R.L. Brooks, On colouring the nodes of a network, Proc. Cambridge Phil. Soc. 37 (1941) 194-197, doi: 10.1017/S030500410002168X.
- G. Chartrand and H.H. Kronk, The point arboricity of planar graphs, J. London Math. Soc. 44 (1969) 612-616, doi: 10.1112/jlms/s1-44.1.612.
- G. Chartrand and L. Lesniak, Graphs and Digraphs, Second Edition, (Wadsworth & Brooks/Cole, Monterey, 1986).
- G. Dirac, A property of 4-chromatic graphs and remarks on critical graphs, J. London Math. Soc. 27 (1952) 85-92, doi: 10.1112/jlms/s1-27.1.85.
- P. Erdős, A.L. Rubin and H. Taylor, Choosability in graphs, in: Proc. West Coast Conf. on Combin., Graph Theory and Computing, Congressus Numerantium XXVI (1979) 125-157.
- T. Gallai, Kritiche Graphen I, Publ. Math. Inst. Hung. Acad. Sci. 8 (1963) 373-395.
- T.R. Jensen and B. Toft, Graph Colouring Problems, (Wiley-Interscience Publications, New York, 1995).
- A.V. Kostochka, M. Stiebitz and B. Wirth, The colour theorems of Brooks and Gallai extended, Discrete Math. 162 (1996) 299-303, doi: 10.1016/0012-365X(95)00294-7.
- P. Mihók, An extension of Brooks' theorem, in: Proc. Fourth Czechoslovak Symp. on Combin., Combinatorics, Graphs, Complexity (Prague, 1991) 235-236.
- S.K. Stein, B-sets and planar graphs, Pacific J. Math. 37 (1971) 217-224.
- C. Thomassen, Color-critical graphs on a fixed surface (Report, Technical University of Denmark, Lyngby, 1995).
- V.G. Vizing, Colouring the vertices of a graph in prescribed colours, Diskret. Analiz 29 (1976) 3-10 (in Russian).