PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
1997 | 17 | 1 | 67-76
Tytuł artykułu

On some variations of extremal graph problems

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A set P of graphs is termed hereditary property if and only if it contains all subgraphs of any graph G belonging to P. A graph is said to be maximal with respect to a hereditary property P (shortly P-maximal) whenever it belongs to P and none of its proper supergraphs of the same order has the property P. A graph is P-extremal if it has a the maximum number of edges among all P-maximal graphs of given order. The number of its edges is denoted by ex(n, P). If the number of edges of a P-maximal graph is minimum, then the graph is called P-saturated and its number of edges is denoted by sat(n, P).
In this paper, we consider two famous problems of extremal graph theory. We shall translate them into the language of P-maximal graphs and utilize the properties of the lattice of all hereditary properties in order to establish some general bounds and particular results. Particularly, we shall investigate the behaviour of sat(n,P) and ex(n,P) in some interesting intervals of the mentioned lattice.
Wydawca
Rocznik
Tom
17
Numer
1
Strony
67-76
Opis fizyczny
Daty
wydano
1997
otrzymano
1997-01-03
Twórcy
  • Department of Geometry and Algebra, Faculty of Science, P.J. Šafárik University, Jesenná 5, 041 54 Košice, Slovak Republic
Bibliografia
  • [1] M. Borowiecki and P. Mihók, Hereditary properties of graphs, in: V.R. Kulli, ed., Advances in Graph Theory (Vishwa Intern. Publication, Gulbarga, 1991) 41-68.
  • [2] P. Erdős, Some recent results on extremal problems in graph theory, Results in: P. Rosentstiehl, ed., Theory of Graphs (Gordon and Breach New York; Dunod Paris, 1967) 117-123; MR37#2634.
  • [3] P. Erdős, On some new inequalities concerning extremal properties of graphs, in: P. Erdős and G. Katona, eds., Theory of Graphs (Academic Press, New York, 1968) 77-81; MR38#1026.
  • [4] J. Kratochvíl, P. Mihók and G. Semanišin, Graphs maximal with respect to hom-properties, Discussiones Mathematicae Graph Theory 17 (1997) 77-88, doi: 10.7151/dmgt.1040.
  • [5] R. Lick and A. T. White, k-degenerate graphs, Canadian J. Math. 22 (1970) 1082-1096; MR42#1715.
  • [6] P. Mihók, On graphs critical with respect to vertex partition numbers, Discrete Math. 37 (1981) 123-126, doi: 10.1016/0012-365X(81)90146-1.
  • [7] P. Mihók and G. Semanišin, On the chromatic number of reducible hereditary properties (submitted).
  • [8] P. Mihók and G. Semanišin, Reducible properties of graphs, Discussiones Math. Graph Theory 15 (1995) 11-18; MR96c:05149, doi: 10.7151/dmgt.1002.
  • [9] M. Simonovits, A method for solving extremal problems in graph theory, stability problems, in: P. Erdős and G. Katona, eds., Theory of Graphs (Academic Press, New York, 1968) 279-319; MR 38#2056.
  • [10] M. Simonovits, Extremal graph problems with symmetrical extremal graphs. Additional chromatical conditions, Discrete Math. 7 (1974) 349-376; MR49#2459.
  • [11] M. Simonovits, Extremal graph theory, in: L.W. Beineke and R.J. Wilson, eds., Selected Topics in Graph Theory vol. 2 (Academic Press, London, 1983) 161-200.
  • [12] P. Turán, On an extremal problem in graph theory, Mat. Fiz. Lapok 48 (1941) 436-452 (Hungarian); MR8,284j.
  • [13] P. Turán, On the theory of graph, Colloquium Math. 3 (1954) 19-30; MR15,476b.
  • [14] L. Kászonyi and Z. Tuza, Saturated graphs with minimal number of edges, J. Graph Theory 10 (1986) 203-210, doi: 10.1002/jgt.3190100209.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1039
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.