EN
A property of graphs is a non-empty set of graphs. A property P is called hereditary if every subgraph of any graph with property P also has property P. Let P₁, ...,Pₙ be properties of graphs. We say that a graph G has property P₁∘...∘Pₙ if the vertex set of G can be partitioned into n sets V₁, ...,Vₙ such that the subgraph of G induced by V_i has property $P_i$; i = 1,..., n. A hereditary property R is said to be reducible if there exist two hereditary properties P₁ and P₂ such that R = P₁∘P₂. If P is a hereditary property, then a graph G is called P- maximal if G has property P but G+e does not have property P for every e ∈ E([G̅]). We present some general results on maximal graphs and also investigate P-maximal graphs for various specific choices of P, including reducible hereditary properties.