ArticleOriginal scientific text

Title

Poisson convergence of numbers of vertices of a given degree in random graphs

Authors 1

Affiliations

  1. Institute of Mathematics, Technical University of Wrocław

Abstract

The asymptotic distributions of the number of vertices of a given degree in random graphs, where the probabilities of edges may not be the same, are given. Using the method of Poisson convergence, distributions in a general and particular cases (complete, almost regular and bipartite graphs) are obtained.

Keywords

Random graphs, degrees of vertices, Poisson convergence

Bibliography

  1. A.D. Barbour, Poisson convergence and random graphs, Math. Proc. Camb. Phil. Soc. 92 (1982) 349-359, doi: 10.1017/S0305004100059995.
  2. A.D. Barbour and G.K. Eagleason, Poisson approximation for some statistics based on exchangeable trials, Adv. Appl. Prob. 15 (1983) 585-600, doi: 10.2307/1426620.
  3. A.D. Barbour, L. Holst and S. Janson, Poisson approximation (Clarendon Press, Oxford, 1992).
  4. M. Karoński and A. Ruciński, Poisson convergence and semiinduced properties of random graphs, Math. Proc. Camb. Phil. Soc. 101 (1987) 291-300, doi: 10.1017/S0305004100066664.
  5. V.L. Klee, D.G. Larman and E.M. Wright, The proportion of labelled bipartite graphs which are connected, J. London Math. Soc. 24 (1981) 397-404, doi: 10.1112/jlms/s2-24.3.397.
  6. W. Kordecki, Vertices of given degree in a random graph, Prob. Math. Stat. 11 (1991) 287-290.
  7. Z. Palka, On the degrees of vertices in a bichromatic random graph, Period. Math. Hung. 15 (1984) 121-126, doi: 10.1007/BF01850725.
  8. Z. Palka, Asymptotic properties of random graphs, Dissertationes Mathematicae, CCLXXV (PWN, Warszawa, 1998).
  9. Z. Palka and A. Ruciński, Vertex-degrees in a random subgraph of a regular graph, Studia Scienc. Math. Hung. 25 (1990) 209-214.
Pages:
157-172
Main language of publication
English
Received
1996-06-24
Accepted
1996-08-08
Published
1996
Exact and natural sciences