PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
1996 | 16 | 2 | 151-155
Tytuł artykułu

A note on strong and co-strong perfectness of the X-join of graphs

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Strongly perfect graphs were introduced by C. Berge and P. Duchet in [1]. In [4], [3] the following was studied: the problem of strong perfectness for the Cartesian product, the tensor product, the symmetrical difference of n, n ≥ 2, graphs and for the generalized Cartesian product of graphs. Co-strong perfectness was first studied by G. Ravindra andD. Basavayya [5]. In this paper we discuss strong perfectness and co-strong perfectness for the generalized composition (the lexicographic product) of graphs named as the X-join of graphs.
Wydawca
Rocznik
Tom
16
Numer
2
Strony
151-155
Opis fizyczny
Daty
wydano
1996
otrzymano
1996-04-26
poprawiono
1996-10-08
Twórcy
  • Institute of Mathematics, Technical University of Zielona Góra, Podgórna 50, 65-246 Zielona Góra, Poland
  • Department of Mathematics, Technical University of Rzeszów, W. Pola 2, 35-359 Rzeszów, Poland
Bibliografia
  • [1] C. Berge and P. Duchet, Strongly perfect graphs, Ann. Disc. Math. 21 (1984) 57-61.
  • [2] M. Borowiecki and A. Szelecka, One factorizations of the generalized Cartesian product and of the X-join of regular graphs, Discussiones Mathematicae 13 (1993) 15-19.
  • [3] M. Kwaśnik and A. Szelecka, Strong perfectness of the generalized Cartesian product of graphs, accepted for publication in the special issue of Discrete Math., devoted to the Second Krako w Conference on Graph Theory, Zakopane 1994.
  • [4] E. Mandrescu, Strongly perfect product of graphs, Czech. Math. Journal, 41 (116) (1991) 368-372.
  • [5] G. Ravindra and D. Basavayya, Co-strongly perfect bipartite graphs, Jour. Math. Phy. Sci. 26 (1992) 321-327.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1030
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.