ArticleOriginal scientific text
Title
An inequality concerning edges of minor weight in convex 3-polytopes
Authors 1, 2
Affiliations
- Institute of Mathematics, Technical University Ilmenau
- Department of Geometry and Algebra, P.J. Šafárik University
Abstract
Let be the number of edges in a convex 3-polytope joining the vertices of degree i with the vertices of degree j. We prove that for every convex 3-polytope there is ; moreover, each coefficient is the best possible. This result brings a final answer to the conjecture raised by B. Grünbaum in 1973.
Keywords
planar graph, convex 3-polytope, normal map
Bibliography
- O. V. Borodin, Computing light edges in planar graphs, in: R. Bodendiek, R. Henn, eds., Topics in Combinatorics and Graph Theory (Physica-Verlag, Heidelberg, 1990) 137-144.
- O. V. Borodin, Structural properties and colorings of plane graphs, Ann. Discrete Math. 51 (1992) 31-37, doi: 10.1016/S0167-5060(08)70602-2.
- O. V. Borodin, Precise lower bound for the number of edges of minor weight in planar maps, Math. Slovaca 42 (1992) 129-142.
- O. V. Borodin, Structural properties of planar maps with the minimal degree 5, Math. Nachr. 158 (1992) 109-117, doi: 10.1002/mana.19921580108.
- O. V. Borodin and D. P. Sanders, On light edges and triangles in planar graph of minimum degree five, Math. Nachr. 170 (1994) 19-24, doi: 10.1002/mana.19941700103.
- B. Grünbaum, Acyclic colorings of planar graphs, Israel J. Math. 14 (1973) 390-408, doi: 10.1007/BF02764716.
- B. Grünbaum, Polytopal graphs, in: D. R. Fulkerson, ed., Studies in Graph Theory, MAA Studies in Mathematics 12 (1975) 201-224.
- B. Grünbaum, New views on some old questions of combinatorial geometry, Int. Teorie Combinatorie, Rome, 1973, 1 (1976) 451-468.
- B. Grünbaum and G. C. Shephard, Analogues for tiling of Kotzig's theorem on minimal weights of edges, Ann. Discrete Math. 12 (1982) 129-140.
- J. Ivančo, The weight of a graph, Ann. Discrete Math. 51 (1992) 113-116, doi: 10.1016/S0167-5060(08)70614-9.
- J. Ivančo and S. Jendrol', On extremal problems concerning weights of edges of graphs, in: Coll. Math. Soc. J. Bolyai, 60. Sets, Graphs and Numbers, Budapest (Hungary) 1991 (North Holland, 1993) 399-410.
- E. Jucovič, Strengthening of a theorem about 3-polytopes, Geom. Dedicata 3 (1974) 233-237, doi: 10.1007/BF00183214.
- E. Jucovič, Convex 3-polytopes (Veda, Bratislava, 1981, Slovak).
- A. Kotzig, Contribution to the theory of Eulerian polyhedra, Mat.-Fyz. as. SAV (Math. Slovaca) 5 (1955) 101-103 (Slovak; Russian summary).
- A. Kotzig, From the theory of Euler's polyhedra, Mat. as. (Math. Slovaca) 13 (1963) 20-34 (Russian).
- O. Ore, The four-color problem (Academic Press, New York, 1967).
- J. Zaks, Extending Kotzig's theorem, Israel J. Math. 45 (1983) 281-296, doi: 10.1007/BF02804013.