ArticleOriginal scientific text

Title

An inequality concerning edges of minor weight in convex 3-polytopes

Authors 1, 2

Affiliations

  1. Institute of Mathematics, Technical University Ilmenau
  2. Department of Geometry and Algebra, P.J. Šafárik University

Abstract

Let eij be the number of edges in a convex 3-polytope joining the vertices of degree i with the vertices of degree j. We prove that for every convex 3-polytope there is 20e3,3+25e3,4+16e3,5+10e3,6+6[23]e3,7+5e3,8+2[12]e3,9+2e3,10+16[23]e4,4+11e4,5+5e4,6+1[23]e4,7+5[13]e5,5+2e5,6120; moreover, each coefficient is the best possible. This result brings a final answer to the conjecture raised by B. Grünbaum in 1973.

Keywords

planar graph, convex 3-polytope, normal map

Bibliography

  1. O. V. Borodin, Computing light edges in planar graphs, in: R. Bodendiek, R. Henn, eds., Topics in Combinatorics and Graph Theory (Physica-Verlag, Heidelberg, 1990) 137-144.
  2. O. V. Borodin, Structural properties and colorings of plane graphs, Ann. Discrete Math. 51 (1992) 31-37, doi: 10.1016/S0167-5060(08)70602-2.
  3. O. V. Borodin, Precise lower bound for the number of edges of minor weight in planar maps, Math. Slovaca 42 (1992) 129-142.
  4. O. V. Borodin, Structural properties of planar maps with the minimal degree 5, Math. Nachr. 158 (1992) 109-117, doi: 10.1002/mana.19921580108.
  5. O. V. Borodin and D. P. Sanders, On light edges and triangles in planar graph of minimum degree five, Math. Nachr. 170 (1994) 19-24, doi: 10.1002/mana.19941700103.
  6. B. Grünbaum, Acyclic colorings of planar graphs, Israel J. Math. 14 (1973) 390-408, doi: 10.1007/BF02764716.
  7. B. Grünbaum, Polytopal graphs, in: D. R. Fulkerson, ed., Studies in Graph Theory, MAA Studies in Mathematics 12 (1975) 201-224.
  8. B. Grünbaum, New views on some old questions of combinatorial geometry, Int. Teorie Combinatorie, Rome, 1973, 1 (1976) 451-468.
  9. B. Grünbaum and G. C. Shephard, Analogues for tiling of Kotzig's theorem on minimal weights of edges, Ann. Discrete Math. 12 (1982) 129-140.
  10. J. Ivančo, The weight of a graph, Ann. Discrete Math. 51 (1992) 113-116, doi: 10.1016/S0167-5060(08)70614-9.
  11. J. Ivančo and S. Jendrol', On extremal problems concerning weights of edges of graphs, in: Coll. Math. Soc. J. Bolyai, 60. Sets, Graphs and Numbers, Budapest (Hungary) 1991 (North Holland, 1993) 399-410.
  12. E. Jucovič, Strengthening of a theorem about 3-polytopes, Geom. Dedicata 3 (1974) 233-237, doi: 10.1007/BF00183214.
  13. E. Jucovič, Convex 3-polytopes (Veda, Bratislava, 1981, Slovak).
  14. A. Kotzig, Contribution to the theory of Eulerian polyhedra, Mat.-Fyz. as. SAV (Math. Slovaca) 5 (1955) 101-103 (Slovak; Russian summary).
  15. A. Kotzig, From the theory of Euler's polyhedra, Mat. as. (Math. Slovaca) 13 (1963) 20-34 (Russian).
  16. O. Ore, The four-color problem (Academic Press, New York, 1967).
  17. J. Zaks, Extending Kotzig's theorem, Israel J. Math. 45 (1983) 281-296, doi: 10.1007/BF02804013.
Pages:
81-87
Main language of publication
English
Received
1996-01-24
Accepted
1996-04-15
Published
1996
Exact and natural sciences