ArticleOriginal scientific text
Title
KP-digraphs and CKI-digraphs satisfying the k-Meyniel's condition
Authors ,
Abstract
A digraph D is said to satisfy the k-Meyniel’s condition if each odd
directed cycle of D has at least k diagonals.
The study of the k-Meyniel’s condition has been a source of many
interesting problems, questions and results in the development of Kernel Theory.
In this paper we present a method to construct a large variety of
kernel-perfect (resp. critical kernel-imperfect) digraphs which satisfy
the k-Meyniel’s condition.
Keywords
digraph, kernel, independent set of vertices, absorbing set of vertices, kernel-perfect digraph, critical-kernel-imperfect digraph, τ-system, τ₁-system, indepedent kernel modulo Q, co-rooted tree, τ-construction, τ₁-construction
Bibliography
- C. Berge, Graphs (North-Holland, Amsterdam, 1985).
- P. Duchet and H. Meyniel, A note on kernel-critical digraphs, Discrete Math. 33 (1981) 103-105, doi: 10.1016/0012-365X(81)90264-8.
- P. Duchet and H. Meyniel, Une generalization du theoreme de Richarson sur l'existence de noyoux dans les graphes orientes, Discrete Math. 43 (1983) 21-27, doi: 10.1016/0012-365X(83)90017-1.
- P. Duchet, A suffiecient condition for a digraph to be kernel-perfect, J. Graph Theory 11 (1987) 81-81, doi: 10.1002/jgt.3190110112.
- H. Galeana-Sánchez and V. Neumann-Lara, On kernels and semikernels of digraphs, Discrete Math. 48 (1984) 67-76, doi: 10.1016/0012-365X(84)90131-6.
- H. Galeana-Sánchez and V. Neumann-Lara, On kernel-perfect critical digraphs, Discrete Math. 59 (1986) 257-265, doi: 10.1016/0012-365X(86)90172-X.
- H. Galeana-Sánchez and V. Neumann-Lara, Extending kernel perfect digraphs to kernel perfect critical digraphs, Discrete Math. 94 (1991) 181-187, doi: 10.1016/0012-365X(91)90023-U.
- H. Jacob, Etude Theorique du Noyau d'un graphe, These, Universite Pierre et Marie Curie, Paris VI, 1979.
- V. Neumann-Lara, Seminúcleos de una digráfica, Anales del Instituto de Matemáticas 11 (1971) UNAM.