ArticleOriginal scientific text

Title

KP-digraphs and CKI-digraphs satisfying the k-Meyniel's condition

Authors ,

Abstract

A digraph D is said to satisfy the k-Meyniel’s condition if each odd directed cycle of D has at least k diagonals. The study of the k-Meyniel’s condition has been a source of many interesting problems, questions and results in the development of Kernel Theory. In this paper we present a method to construct a large variety of kernel-perfect (resp. critical kernel-imperfect) digraphs which satisfy the k-Meyniel’s condition.

Keywords

digraph, kernel, independent set of vertices, absorbing set of vertices, kernel-perfect digraph, critical-kernel-imperfect digraph, τ-system, τ₁-system, indepedent kernel modulo Q, co-rooted tree, τ-construction, τ₁-construction

Bibliography

  1. C. Berge, Graphs (North-Holland, Amsterdam, 1985).
  2. P. Duchet and H. Meyniel, A note on kernel-critical digraphs, Discrete Math. 33 (1981) 103-105, doi: 10.1016/0012-365X(81)90264-8.
  3. P. Duchet and H. Meyniel, Une generalization du theoreme de Richarson sur l'existence de noyoux dans les graphes orientes, Discrete Math. 43 (1983) 21-27, doi: 10.1016/0012-365X(83)90017-1.
  4. P. Duchet, A suffiecient condition for a digraph to be kernel-perfect, J. Graph Theory 11 (1987) 81-81, doi: 10.1002/jgt.3190110112.
  5. H. Galeana-Sánchez and V. Neumann-Lara, On kernels and semikernels of digraphs, Discrete Math. 48 (1984) 67-76, doi: 10.1016/0012-365X(84)90131-6.
  6. H. Galeana-Sánchez and V. Neumann-Lara, On kernel-perfect critical digraphs, Discrete Math. 59 (1986) 257-265, doi: 10.1016/0012-365X(86)90172-X.
  7. H. Galeana-Sánchez and V. Neumann-Lara, Extending kernel perfect digraphs to kernel perfect critical digraphs, Discrete Math. 94 (1991) 181-187, doi: 10.1016/0012-365X(91)90023-U.
  8. H. Jacob, Etude Theorique du Noyau d'un graphe, These, Universite Pierre et Marie Curie, Paris VI, 1979.
  9. V. Neumann-Lara, Seminúcleos de una digráfica, Anales del Instituto de Matemáticas 11 (1971) UNAM.
Pages:
5-16
Main language of publication
English
Received
1994-06-13
Accepted
1996-04-30
Published
1996
Exact and natural sciences