PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
1995 | 15 | 2 | 179-184
Tytuł artykułu

The flower conjecture in special classes of graphs

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We say that a spanning eulerian subgraph F ⊂ G is a flower in a graph G if there is a vertex u ∈ V(G) (called the center of F) such that all vertices of G except u are of the degree exactly 2 in F. A graph G has the flower property if every vertex of G is a center of a flower.
Kaneko conjectured that G has the flower property if and only if G is hamiltonian. In the present paper we prove this conjecture in several special classes of graphs, among others in squares and in a certain subclass of claw-free graphs.
Wydawca
Rocznik
Tom
15
Numer
2
Strony
179-184
Opis fizyczny
Daty
wydano
1995
otrzymano
1994-11-28
Twórcy
  • Department of Mathematics, University of West Bohemia, Americká 42, 306 14 Plzeň, Czech Republic
  • Lehrstuhl C für Mathematik, Rhein.n-Westf. Techn. Hochschule, Templergraben 55, D-52062 Aachen, Germany
Bibliografia
  • [1] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications (Macmillan, London and Elsevier, New York, 1976).
  • [2] H. Fleischner, The square of every two-connected graph is hamiltonian, J. Combin. Theory (B) 16 (1974) 29-34, doi: 10.1016/0095-8956(74)90091-4.
  • [3] H. Fleischner, In the squares of graphs, hamiltonicity and pancyclicity, hamiltonian connectedness and panconnectedness are equivalent concepts, Monatshefte für Math. 82 (1976) 125-149, doi: 10.1007/BF01305995.
  • [4] A. Kaneko, Research problem, Discrete Math., (to appear).
  • [5] A. Kaneko and K. Ota, The flower property implies 1-toughness and the existence of a 2-factor, Manuscript (unpublished).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1015
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.