PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
1995 | 15 | 2 | 147-166
Tytuł artykułu

A linear algorithm for the two paths problem on permutation graphs

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The 'two paths problem' is stated as follows. Given an undirected graph G = (V,E) and vertices s₁,t₁;s₂,t₂, the problem is to determine whether or not G admits two vertex-disjoint paths P₁ and P₂ connecting s₁ with t₁ and s₂ with t₂ respectively. In this paper we give a linear (O(|V|+ |E|)) algorithm to solve the above problem on a permutation graph.
Wydawca
Rocznik
Tom
15
Numer
2
Strony
147-166
Opis fizyczny
Daty
wydano
1995
otrzymano
1994-05-09
Twórcy
  • Department of Computer Science, Indian Institute of Technology, Madras 600 036, India
  • Department of Computer Science, Indian Institute of Technology, Madras 600 036, India
Bibliografia
  • [BM 76] J.A. Bondy, U.S.R. Murthy, Graph Theory with Applications (Academic Press, 1976).
  • [ET 75] S. Even, R.E. Tarjan, Network flow and testing graph connectivity, SIAM J. Comput. 4 (1975) 507-518, doi: 10.1137/0204043.
  • [HT 74] J.E. Hopcroft, R.E. Tarjan, Efficient planarity testing, J. ACM 21 (1974) 549-568, doi: 10.1145/321850.321852.
  • [G 80] M.C. Golumbic, Algorithmic Graph Theory and Perfect Graphs (Academic Press, 1980).
  • [MT 89] B. Mishra, R.E. Tarjan, A linear time algorithm for finding an ambitus (Technical Report 464, August 1989, New York University).
  • [O 80] T. Ohtsuki, The two disjoint path problem and wire routing design, In: Proc. of the 17th Symp. of Res. Inst. of Electrical Comm. (1980) 257-267.
  • [PS 78] Y. Perl, Y. Shiloach, Finding two disjoint paths between two pairs of vertices in a graph, J. of the ACM 25 (1978) 1-9, doi: 10.1145/322047.322048.
  • [RP] P.B. Ramprasad, C. Pandu Rangan, A new linear time algorithm for the two path problem on planar graphs (Technical Report, Department of Computer Science, IIT, Madras, 1991).
  • [S 80] Y. Shiloach, A polynomial solution to the undirected two paths problem, J. of the ACM 27 (1980) 445-456, doi: 10.1145/322203.322207.
  • [S 83] J. Spinrad, Transitive orientation in O(n²) time, In: Proc. of Fifteenth ACM Symposium on the Theory of Computing (1983) 457-466, doi: 10.1145/800061.808777.
  • [KPS 91] S.V. Krishnan, C. Pandu Rangan, S. Seshadri, A. Schwill, Two Disjoint Paths in Chordal graphs (Technical Report, 2/91, February 1991, University of Oldenburg, Germany).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1013
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.