ON CENTRALIZER OF SEMIPRIME INVERSE SEMIRING

S. SARA, M. ASLAM AND M.A. JAVED

Department of Mathematics
GC University, Lahore, Pakistan

e-mail: saro_c18@yahoo.com
aslam298@hotmail.com
anjum2512@yahoo.com

Abstract

Let S be 2-torsion free semiprime inverse semiring satisfying A_2 condition of Bandlet and Petrich [1]. We investigate, when an additive mapping T on S becomes centralizer.

Keywords: inverse semiring, semiprime inverse semiring, commutators, left(right) centralizer.

2010 Mathematics Subject Classification: 16Y60, 16W25.

1. Introduction and preliminaries

Throughout this paper, S we will represent inverse semiring which satisfies A_2 condition of Bandlet and Petrich [1]. S is prime if $aSb = (0)$ implies either $a = 0$ or $b = 0$ and S is semiprime if $aSa = (0)$ implies $a = 0$. S is n-torsion free if $nx = 0$, $x \in S$ implies $x = 0$. Following Zalar [12], we canonically define left(right) centralizer of S as an additive mapping $T : S \to S$ such that

$T(xy) = T(x)y \ (xT(y)), \ \forall x, y \in S$ and T is called centralizer if it is both right and left centralizer.

Bresar and Zalar [2] have proved that an additive mapping T on 2-torsion free prime ring R which satisfies weaker condition $T(x^2) = T(x)x$ is a left centralizer. Later, Zalar [12] generalized this result for semiprime rings. Motivated by the work of Zalar [12], Vukman [10] proved that an additive mapping on 2-torsion free semiprime ring satisfying $T(xyz) = xT(y)x$ is a centralizer. In this paper, our objective is to explore the result of Vukman [10] in the setting of inverse semirings as follows: Let S be 2-torsion free semiprime inverse semiring and let
Let $T : S \to S$ be additive mapping such that $T(xy) + xT(y)x = 0$ holds $\forall x, y \in S$ then T is a centralizer.

To prove this result we will first generalize Proposition 1.4 of [12] in the framework of inverse semirings.

By semiring we mean a nonempty set S with two binary operations $'+'$ and '\cdot' such that $(S, '+')$ and (S, \cdot) are semigroups where $+$ is commutative with absorbing zero 0, i.e., $a + 0 = 0 + a = a$, $0.0 = 0a \forall a \in S$ and $a(b + c) = a.b + a.c$, $(b + c)a = b.a + c.a$ holds $\forall a, b, c \in S$. Introduced by Karvellas [6], a semiring S is an inverse semiring if for every $a \in S$ there exist a unique element $\hat{a} \in S$ such that $a + \hat{a} + a = a$ and $\hat{a} + a + \hat{a} = \hat{a}$, where \hat{a} is called pseudo inverse of a. Karvellas [6] proved that for all $a, b \in S$, $(a.b) = \hat{a}.b = a.\hat{b}$ and $\hat{a}b = ab$.

In this paper, inverse semirings satisfying the condition that for all $a \in S$, $a + \hat{a}$ is in center $Z(S)$ of S are considered (see [4] for more details). Commutative inverse semirings and distributive lattices are natural examples of inverse semirings satisfying A_2. In a distributive lattice pseudo inverse of every element is itself. Also if R is commutative ring and $I(R)$ is semiring of all two sided ideals of R with respect to ordinary addition and product of ideals and T is subsemiring of $I(R)$ then set $S_1 = \{(a, I) : a \in R, I \in T\}$. Define on S_1 addition \oplus and multiplication \odot by $(a, I) \oplus (b, J) = (a + b, I + J)$ and $(a, I) \odot (b, J) = (ab, IJ)$.

It is easy to see S_1 is an inverse semiring with A_2 condition where $(a, I) = (\hat{a}, I)$.

By [4], commutator $[\cdot, \cdot]$ in inverse semirings defines as $[x, y] = xy + yx$. We will make use of commutator identities $[x, y + z] = [x, y] + [x, z]$, $[x, y]z = [x, z]y + [x, y]z$ and $[x, y] + z = x[x, y]z + y[x, z]$ (see [4] for their proofs).

The following Lemmas are useful in establishing main result.

Lemma 1.1. For $a, b \in S$, $a + b = 0$ implies $a = \hat{b}$.

Proof. Let $a + b = 0$ which implies $a + \hat{a} + \hat{b} + \hat{b} = 0$ or $a + b + \hat{a} + \hat{b} + a = a$ or $a + b + \hat{b} = a$ and by hypothesis, we get $a = \hat{b}$.

However, converse of Lemma 1.1. is not true for instance, in distributive lattice D, for $a \in D$ we have $a = \hat{a}$ but $a + a = a$.

Lemma 1.2. If $x, y, z \in S$ then following identities are valid:

1. $[xy, x] = x[y, x]$, $[x, yx] = [x, y]x$, $[x, xy] = x[x, y]$, $[yx, x] = [y, x]x$
2. $y[x, z] = [x, yz] + [x, y]\hat{z}$, $[x, y]z = \hat{y}[x, z] + [x, yz]$
3. $x[y, z] = [xy, z] + [x, z]\hat{y}$, $[x, z]y = [xy, z] + \hat{x}[y, z]$

Proof.

1. $[xy, x] = xyx + \hat{x}xy = x(yx + \hat{y}x) = x[y, x]$.
2. $y[x, z] = (y + \hat{y} + y)(xz + \hat{z}x) = (y + \hat{y})xz + (y + \hat{y})\hat{z}x + yxz + y\hat{z}x = x(y + \hat{y})z + (y + \hat{y})\hat{z}x + yxz + y\hat{z}x = x[y, z] + [x, y]\hat{z}$.

Proof of the other identities can be obtained using similar techniques.
In the following, we extend Lemma 1.1 of Zalar [12] in a canonical fashion.

Lemma 1.3. Let S be a semiprime inverse semiring such that for $a, b \in S$, $axb = ab = ba = 0$.

Definition 1.4. A mapping $f : S \times S \to S$ is biadditive if $f(x_1 + x_2, y) = f(x_1, y) + f(x_2, y)$ and $f(x, y_1 + y_2) = f(x, y_1) + f(x, y_2)$, for all $x, y, x_1, x_2, y_1, y_2 \in S$.

Example. Define mappings $f, g : S_1 \times S_1 \to S_1$ by $f((a, I), (b, J)) = (ab, IJ)$ and $g((a, I), (b, J)) = ([a, b], IJ)$. Then f and g are biadditive.

Also, if (D, \land, \lor) is a distributive lattice then $h : D \times D \to D$ defined by $h(a, b) = a, \forall a, b \in D$ is a biadditive mapping.

Lemma 1.5. Let S be semiprime inverse semiring and $f, g : S \times S \to S$ are biadditive mappings such that $f(x, y)wg(x, y) = 0, \forall x, y, w \in S$, then $f(x, y)wg(s, t) = 0, \forall x, y, s, t, w \in S$.

Proof. Replace x with $x + s$ in $f(x, y)wg(x, y) = 0$, we get $f(s, y)wg(x, y) + f(x, y)wg(s, y) = 0$. By Lemma 1.1, we have $f(x, y)wg(s, y) = f(s, y)wg(x, y)$. This implies $(f(x, y)wg(s, y))z(f(x, y)wg(x, y)) = (f(s, y)wg(x, y))z(f(x, y)wg(s, y)) = 0$ and semiprimeness of S implies that $f(x, y)wg(s, y) = 0$. Now replacing y with $y + t$ in last equation and using similar approach we get the required result.

Lemma 1.6. Let S be a semiprime inverse semiring and $a \in S$ some fixed element. If $a[x, y] = 0$ for all $x, y \in S$, then there exists an ideal I of S such that $a \in I \subset Z(S)$ holds.

Proof. By Lemma 1.2, we have $[z, a]x[z, a] = za[x, a] + zax[z, a] = za([z, xa] + [z, x]a) + [z, x]a \land [z, ax] = za[z, xa] + za[z, xa]a + a(z, xa)a = 0$.

Using semiprimeness of S and then Lemma 1.1, we get $a \in Z(S)$. By Lemma 1.2, we have $zaw[x, y] = za([x, w]y) = 0, \forall x, y, z, w \in S$. By similar argument, we can show that $zaw \in Z(S)$ and hence $SaS \subset Z(S)$. Now it is easy to see that ideal generated by a is central.

Lemma 1.7. Let S be semiprime inverse semiring and $a, b, c \in S$ such that

\[(1)\quad axb + bxc = 0\]

holds for all $x \in S$ then $(a + c)xb = 0$ for all $x \in S$.

Proof. Replace x with xyb in (1), we get

\[(2)\quad axbyb + bxbyc = 0, \quad x, y \in S.\]
Post multiplying (1) by \(yb\) gives

\[
(3) \quad axbyb + bxcyb = 0, \quad x, y \in S.
\]

Applying Lemma 1.1 on (2) and using it in (3), we have

\[
(4) \quad bx(byc + cyb) = 0, \quad x, y \in S.
\]

Replace \(x\) with \(ycx\) in (4), we get

\[
(5) \quad bycx(byc + cyb) = 0, \quad x, y \in S.
\]

Pre multiplying (4) by \(cy\) gives

\[
(6) \quad cybx(byc + cyb) = 0, \quad x, y \in S.
\]

Adding pseudo inverse of (5) and (6) we get

\[
(byc + cyb) x(byc + cyb) = 0, \quad x, y \in S.
\]

Using semiprimeness of \(S\) and Lemma 1.1, we get \(byc = cyb, y \in S\). By using last relation in (1) we get the required result.

2. Main results

Theorem 2.1. Let \(S\) be a 2-torsion free semiprime inverse semiring and \(T : S \rightarrow S\) be an additive mapping which satisfies \(T(x^2) + T(x)\dot{x} = 0, \forall x \in S\). Then \(T\) is a left centralizer.

Proof. Take,

\[
(7) \quad T(x^2) + T(x)\dot{x} = 0, \quad x \in S.
\]

Linearization of (7) gives

\[
(8) \quad T(xy + yx) + T(x)\dot{y} + T(y)\dot{x} = 0, \quad x, y \in S.
\]

Replace \(y\) with \(xy + yx\) in (8), we get

\[
(9) \quad T(x^2y + yx^2) + 2T(xy) + T(xy)\dot{x} + T(yx)\dot{x} + T(x)yx + T(x)xy = 0.
\]

Using Lemma 1.1 in (8) and using it in (9), we have

\[
(10) \quad T(x^2y + yx^2) + 2T(xy) + T(x)y\dot{x} + T(y)\dot{x}^2 + T(x)y\dot{x} + T(x)xy = 0.
\]
Using Lemma 1.1 in (7) and using it in (10) we get
\[(11) \quad T(x^2y + yx^2) + 2T(xy^2) + T(x)y^2 + T(y)x^2 + T(x^2)y = 0.\]
Replace \(x\) with \(x^2\) in (8) we get
\[(12) \quad T(x^2y + yx^2) + T(x^2)y + T(y)x^2 = 0.\]
Using (12) in (11), we get
\[
2T(xy^2) + 2T(x)y^2 = 0.
\]
As \(S\) is 2-torsion free, so we have
\[(13) \quad T(xyx) + T(x)y^2 = 0.\]
Linearization (by \(x = x + z\)) of (13) gives
\[(14) \quad T(xyz + yzx) + T(x)y^2 + T(z)y^2 = 0.\]
Replace \(x\) with \(xy, z \) with \(yx\) and \(y\) with \(z\) in (14), we get
\[(15) \quad T(xyzx + yzx) + T(xy)zy^2 + T(yzx) = 0.\]
Replace \(y\) with \(yzy\) in (13), we get
\[(16) \quad T(xyzx) + T(x)yzy^2 = 0.\]
Replace \(x\) with \(y\) and \(y\) with \(xzx\) in (13), we get
\[(17) \quad T(yxx) + T(y)zx^2 = 0.\]
By adding (16) and (17), we get
\[(18) \quad T(xyzx + yzx) + T(xy)zy^2 + T(y)xzx^2 = 0.\]
Using Lemma 1.1 in (15) and using the result in (18), we get
\[(19) \quad T(xyzx) + T(xy)zy^2 + T(y)zxx^2 = 0.\]
Now if we define biadditive function \(f : S \times S \to S\) by \(f(x, y) = T(xy) + T(x)y^2\),
then (19) can be written as
\[(20) \quad f(x, y)zyx + f(y, x)zx = 0.\]
From (8) and Lemma 1.1, we have
\[
(f(x, y))' = f(y, x).
\]
Thus (20) can be rewritten as

\[f(x, y)zyx + f(x, y)zxy = 0, \quad \text{or} \]
\[f(x, y)z[x, y] = 0, \quad x, y, z \in S. \]

Using Lemma 1.5 and then Lemma 1.3, we have \(f(x, y)[s, t] = 0, \) \(x, y, s, t \in S. \)

Now fix \(x, y \) then by Lemma 1.6, there exist ideal \(I \subset Z(S) \) such that \(f = f(x, y) \in I \subset Z(S) \). This implies that \(bf, fb \in Z(S), \forall b \in S \), thus we have

(21) \[xfy = xyf = fxy = yfx \quad \text{and} \]
(22) \[xf^2y = f^2xy = yf^2x = f^2yx. \]

Replace \(y \) with \(f^2y \) in (8), we get

\[2T(xf^2y + f^2yx) + 2T(x)f^2\dot{y} + 2T(f^2y)\dot{x} = 0. \]

Using (22), we get

(23) \[2T(yf^2x + f^2xy) + 2T(x)f^2\dot{y} + 2T(f^2y)\dot{x} = 0. \]

By Lemma 1.1, (8), (7) and (23), we have

\[2T(y)f^2x + 2T(f^2x)y + 2T(x)f^2\dot{y} + 2T(f^2y)\dot{x} = 0, \quad \text{or} \]
\[2T(y)f^2x + T(f^2x + f^2x)y + 2T(x)f^2\dot{y} + T(f^2y + f^2y)\dot{x} = 0, \quad \text{or} \]
\[2T(y)f^2x + T(f^2x + xf^2)y + 2T(x)f^2\dot{y} + T(f^2y + yf^2)\dot{x} = 0, \quad \text{or} \]
\[2T(y)f^2x + T(f^2)x y + T(x)f^2\dot{y} + T(f^2)y \dot{x} + T(y)f^2x = 0, \quad \text{or} \]
\[2T(y)f^2x + T(y)f^2\dot{x} + T(f^2)xy + T(x)f^2y + 2T(x)f^2\dot{y} + T(f^2)y \dot{x} = 0, \quad \text{or} \]
\[T(y)f^2x + T(f)fxy + T(x)f^2\dot{y} + T(f)fy\dot{x} = 0, \quad \text{or} \]
(24) \[T(f)x f^2 + T(x)\dot{f} ^2y + T(f)y (\dot{x} + x) = 0. \]

Now replace \(x \) with \(xy \) and \(y \) with \(f^2 \) in (8) and then using (21) and (22), we get

\[2T(fxfy + fgyf) + 2T(xy)f^2 + 2T(f^2)\dot{xy} = 0. \]

By Lemma 1.1, (8) and (7), we have

\[2T(f)xfy + 2T(fy)f + 2T(xy)f^2 + 2T(f^2)\dot{xy} = 0, \quad \text{or} \]
\[T(f + fx)fy + T(fy + fy)fx + 2T(xy)f^2 + 2T(f^2)\dot{xy} = 0. \]
\[T(fx + xf)fy + T(fy + yf)fx + 2T(xy)f^2 + 2T(f^2)\dot{x}y = 0 \]
\[T(f)xy + T(x)fy + T(y)fxf + 2T(xy)f^2 + 2T(f^2)\dot{x}y = 0 \]
\[T(f)xfy + T(x)f^2y + T(y)fxy + 2T(xy)f^2 + 2T(f)\dot{x}y = 0 \]
\[T(f)fxy + 2T(f)\dot{x}y + T(f)fxy + T(x)f^2y + yT(y)f^2x + 2T(xy)f^2 = 0 \]
\[T(f)fxy(\dot{x} + x) + T(x)f^2y + T(y)f^2x + 2T(xy)f^2 = 0. \]

Using Lemma 1.1 in (24) and using the result in last equation, we get
\[2T(x)f^2y + 2T(xy)f^2 = 0, \text{ or} \]
\[T(x)f^2y + T(xy)f^2 = 0, \text{ or} \]
\[(T(x)\dot{y} + T(xy))f^2 = 0 \text{ or } f^3 = 0 \text{ which implies} \]
\[f^3Sf^2 = f^4 = (0) \Rightarrow f^2 = 0. \]

Thus \(fSf = f^2S = (0) \Rightarrow f = 0. \) Therefore \(T(xy) + T(x)\dot{y} = 0 \) and then Lemma 1.1 implies that \(T \) is a left centralizer.

Theorem 2.2. Let \(S \) be a 2-torsion free semiprime inverse semiring and let \(T : S \to S \) be an additive mapping such that
\[(26) \quad T(xy) + xT(y)\dot{x} = 0, \forall x, y \in S. \]

Then \(T \) is a centralizer.

Proof. First we show that
\[[[T(x), x], x] = 0. \]

Linearization of (26) gives
\[(27) \quad T(xy + zy) + xT(y)\dot{z} + zT(y)\dot{x} = 0, \forall x, y, z \in S. \]

Replace \(y \) with \(x \) and \(z \) with \(y \) in last equation, we get
\[(28) \quad T(x^2y + yx^2) + xT(x)\dot{y} + yT(x)\dot{x} = 0. \]

Replace \(z \) with \(x^3 \) in (27), we get
\[(29) \quad T(xy^3 + x^3yx) + xT(y)\dot{x}^3 + x^3T(y)\dot{x} = 0. \]
Replace y with xyx in (28), we get

\[(30) \quad T(x^3y + x^3yx) + xyT(x)x + xT(x)xyx = 0.\]

Replace y with $x^2y + yx^2$ in (26), we have

\[(31) \quad T(x^3y + x^3yx) + xT(x^2y + yx^2)x = 0.\]

Using Lemma 1.1 in (30) and using the result in (31), we get

\[(32) \quad xyT(x)x + xT(x)xyx + xT(x^2y + yx^2)x = 0, \quad \text{or} \quad x[T(x), x]yx + xyT(x), x]x = 0.\]

Using Lemma 1.7 in (32), we have

\[(33) \quad ([T(x), x]yx = 0, \quad \text{or} \quad x[T(x), x] + [T(x), x]x = 0.\]

Replace y with $y[T(x), x]$ in (33), we have

\[(34) \quad [[T(x), x], x]y[T(x), x]x = 0.\]

Post multiplication (33) with $[T(x), x]$ gives

\[(35) \quad [[T(x), x], x]yx[T(x), x] = 0.\]

Adding pseudo inverse of (35) and (34), we have $[[T(x), x], y[[T(x), x], x] = 0$ and then semiprimeness of S implies that

\[(36) \quad [[T(x), x], x] = 0, \quad \forall x \in S \quad \text{or} \quad [T(x), x]x + x[T(x), x] = 0 \quad \text{or} \quad [T(x), x]x + (x + \dot{x})[T(x), x] = x[T(x), x], \quad \text{or} \quad [T(x), x]x + [T(x), x][x + \dot{x}] = x[T(x), x], \quad \text{or} \quad [T(x), x]x = x[T(x), x], \quad \forall x \in S.\]
Linearization of (36) gives

\[
[T(x), x], y + [T(y), x] + [T(y), x] + [T(y), x] = 0.
\]

(38)

Replace \(x \) with \(\dot{x} \) in (38) and using again (38) and the fact that \((T(x)) = T(\dot{x}) \) we have

\[
2[[T(x), x], y] + 2[[T(x), x], x] + [[T(y), x], y + \dot{y}]
\]

(39)

Adding (38) in (39) and then using (38) again, we get

\[
[[T(x), x], y] + [[T(x), y], x] + [[T(y), x], x] = 0, \forall x, y \in S.
\]

(40)

Replacing \(y \) with \(xyx \) in (40), we have

\[
[[T(x), x], xyx] + [[T(x), x], x] + [[T(y), x], x] = 0, \forall x, y \in S.
\]

Using Lemma 1.1 in (26) and using it in last equation, we get

\[
[[T(x), x], y] + [[T(x), y], x] + [[xT(y)x], x] = 0.
\]

Using Lemma 1.2, we have

\[
[[T(x), x], y] + x[[T(y), y], x] + [xT(y), x], x]
\]

Using (36) and Lemma 1.2, we get

\[
x[[T(x), x], y] + x[[T(y), x], x] + [[T(x), x], x] + x[yT(x)], x] = 0.
\]

Again using Lemma 1.2, and (36) we have

\[
x[[T(x), x], y] + x[[T(y), x], x] + [T(x), x]y]x + [T(x), x][y, x]x + xT(x), x] = 0.
\]

Using (40) in last equation, we get

\[
[T(x), x][y, x] + x[y, x][T(x), x] = 0
\]

\[
[T(x), x](y + \dot{y}x + x(y, x)]T(x), x] = 0
\]
\[[T(x), x]yx^2 + [T(x), x]\dot{y}x + xy[T(x), x] + x^2y[T(x), x] = 0. \]

Using (37), we get
\[[T(x), x]yx^2 + x^2\dot{y}[T(x), x] + \dot{x}[T(x), x]yx + xy[T(x), x]x = 0. \]

Using (32), we have
\[(41) \quad [T(x), x]yx^2 + x^2\dot{y}[T(x), x] = 0. \]

Pre multiply (41) by \(x \) gives
\[(42) \quad x[T(x), x]yx^2 + x^3\dot{y}[T(x), x] = 0. \]

Using Lemma 1.1 in (32) and using it in (42), we get
\[(43) \quad xy[T(x), x]x^2 + x^3\dot{y}[T(x), x] = 0. \]

Pre multiply last equation by \(T(x) \), we get
\[(44) \quad T(x)xy[T(x), x]x^2 + T(x)x^3\dot{y}[T(x), x] = 0. \]

Replace \(y \) with \(T(x)y \) in (43), we get
\[(45) \quad xT(x)y[T(x), x]x^2 + x^3T(x)\dot{y}[T(x), x] = 0. \]

Adding pseudo inverse of (45) and (44), we get
\[(46) \quad [T(x), x]y[T(x), x]x^2 + [T(x), x^3]y[T(x), x] = 0. \]

By applying Lemma 1.7 in (46), we get
\[
\begin{align*}
([T(x), x]\dot{x}^2 + [T(x), x^3])y[T(x), x] &= 0 \\
([T(x), x]\dot{x}^2 + [T(x), x]x^2 + x[T(x), x^2])y[T(x), x] &= 0 \\
([T(x), x]\dot{x}^2 + [T(x), x]x^2 + x[T(x), x]x + x^2[T(x), x])y[T(x), x] &= 0.
\end{align*}
\]
Using (37) and the fact that S is inverse semiring, we have
$$x[T(x), x]xy[T(x), x] = 0.$$ And then semiprimeness of S implies that

(47) \hspace{1cm} x[T(x), x]x = 0, \forall x \in S.

Replace y with yx in (32) and using (47) we have

(48) \hspace{1cm} x[T(x), x]yx^2 = 0.

Replace y with $yT(x)$ in (48), we get

(49) \hspace{1cm} x[T(x), x]yT(x)x^2 = 0.

Post multiplying (48) by $T(x)$, we get

(50) \hspace{1cm} x[T(x), x]yx^2T(x) = 0.

Adding pseudo inverse of (50) in (49), we get

$$x[T(x), x]y + \left[T(x), y \right]_x + \left[T(y), x \right]_x = 0.$$ Using (37) and the fact that S is 2-torsion free, we have

(51) \hspace{1cm} x[T(x), x] = 0 = [T(x), x]_x, \ x \in S.

As (40) obtained from (36), we can get following from (51)

(52) \hspace{1cm} [T(x), x]y + [T(x), y]_x + [T(y), x]_x = 0.

Post multiplying (52) by $[T(x), x]$ and using (51), we get $[T(x), x]y[T(x), x] = 0$, $\forall y \in S$ which implies that

(53) \hspace{1cm} [T(x), x] = 0.

Replace y with $xy + yx$ in (26), we have

(54) \hspace{1cm} T(x^2yx + xyx^2) + xT(xy + yx)T = 0.

Replace z with x^2 in (27), we get

(55) \hspace{1cm} T(xy + x^2yx) + xT(y)x^2 + x^2T(y)T = 0.
Using Lemma 1.1 in (54) and using the result in (55) we get

\[x(T(xy + yx) + xT(y) + T(y)x) = 0. \]

Now if we define biadditive function \(g : S \times S \to S \) by \(g(x, y) = T(xy + yx) + T(y)x + xT(y) \) then last equation can be written as

\[(56) \quad xg(x, y)x = 0. \]

As (40) obtained from (36), we can obtain following from (56)

\[(57) \quad xg(x, y)z + xg(z, y)x + zg(x, y)x = 0, \quad \forall x, y, z \in S. \]

Post multiplication (57) by \(g(x, y)x \) and using (56) we get

\[(58) \quad xg(x, y)zg(x, y)x = 0. \]

Linearization of (53) gives

\[(59) \quad [T(x), y] + [T(y), x] = 0. \]

Replace \(y \) with \(xy + yx \) in above equation and using (53) we get

\[[T(xy + yx), x] + x[T(x), y] + [T(x), y]x = 0. \]

Using Lemma 1.1 in (59) and using the result in last equation, we get

\[x[T(y), x] + [T(y), x]x + [T(xy + yx), x] = 0. \]

Using Lemma 1.2 in last equation, we get

\[[xT(y), x] + [T(y)x, x] + [T(xy + yx), x] = 0, \quad \text{or} \]

\[[xT(y) + T(y)x + T(xy + yx), x] = 0, \quad \text{or} \]

\[(60) \quad [g(x, y), x] = 0. \]

which gives

\[(61) \quad g(x, y)x = xg(x, y), \quad x, y \in S. \]

By (58) and (61), \(g(x, y)xzg(x, y)x = 0 \) this and (61) implies

\[(62) \quad xg(x, y) = 0 = g(x, y)x. \]

Linearization of (62) gives \(g(x, y)z + g(z, y)x = 0 \).
Post multiplying last equation by \(g(x, y) \) and using (62), we get \(g(x, y)zg(x, y) = 0 \) and this implies \(g(x, y) = 0, x, y \in S \). Put \(x = y \), we get

\[
2T(x^2) + \dot{x}T(x) + T(x)\dot{x} = 0.
\]

From (53) we can get \(T(x)x = xT(x) \), using this and the fact that \(S \) is 2-torsion free, in (63), we get

\[
T(x^2) + \dot{x}T(x) = 0 \quad \text{and} \quad T(x^2) + T(x)\dot{x} = 0.
\]

And therefore by Theorem 2.1, it follows that \(T \) is right and left centralizer. This completes the proof.

Acknowledgement

We are thankful to referee for the valuable suggestions.

References

Received 3 November 2015
Revised 8 March 2016