ArticleOriginal scientific text

Title

On the autotopism group of the Cordero-Figueroa semifield of order 3⁶

Authors 1, 2, 3

Affiliations

  1. University of Puerto Rico, Río Piedras Campus, Mathematics Deparment, P.O. Box 70377, San Juan, PR 00936 - 8377, USA
  2. University of Puerto Rico, Río Piedras Campus, Mathematics Deparment, P.O. Box 70377, San Juan, PR 00936 - 8377, USA,
  3. University of Puerto Rico, Cayey Campus, Mathematics and Physics Deparment, 205 Calle Antonio R. Barcel´o, Cayey, PR 00736, USA

Abstract

In [5] M. Biliotti, V. Jha and N. Johnson were able to completely determine the autotopism group of a generalized twisted field as a subgroup of ΓL(K) × ΓL(K), where K = GF(pⁿ) and ΓL(K) is the group of nonsingular semilinear transformations over K. In this article, we consider the Cordero-Figueroa semifield of order 3⁶, which is not a generalized twisted field, and we prove that its autotopism group is isomorphic to a subgroup of ΓL(K) × ΓL(K), where K = GF(3⁶).

Keywords

finite presemifield, finite semifield, autotopism, autotopism group

Bibliography

  1. A.A. Albert, Generalized twisted fields, Pacific J. Math,11,1961, 1-8. doi: 10.2140/pjm.1961.11.1
  2. A.A. Albert, On nonassociative division algebras, TAMS,72,1952, 296-309. doi: 10.1090/S0002-9947-1952-0047027-4
  3. A.A. Albert, Finite division algebras and finite planes, Proc. Sympos. Appl. Math.,10,1960, 53-70. doi: 10.1090/psapm/010/0116036
  4. J. Bierbrauer, Projective polynomials, a projection construction and a family of semifields, Designs, Codes and Cryptography,79,2016, 183-200. doi: 10.1007/s10623-015-0044-z
  5. M. Biliotti, V. Jha and N. Johnson, The collineation groups of generalized twisted field planes, G. Dedicata,76,1999, 91-126.
  6. N. Jhonson, V. Jha and M. Biliotti, Handbook of finite translation planes, Boca Raton: Chapman & Hall/CRC,2007.
  7. M. Cordero and R. Figueroa, Towards a characterization of the generalized twisted field planes, J. Geom. 52 1995, 54-63. doi: 10.1007/BF01406826
  8. Coulter,R.S. Coulter, M. Henderson and P. Kosick, Planar polynomials for conmutative semifields with specified nuclei, Des. Codes Cryptogr. 44 2007, 275-286.
  9. L.E. Dickson, Linear algebras in which division is always uniquely possible, Trans. Amer. Math. Soc. 7 1906, 370-390. doi: 10.1090/S0002-9947-1906-1500755-5
  10. R. Figueroa, A characterization of the generalized twisted field planes of characteristic ≥ 5, Geom. Dedicata 50 1994, 205-216. doi: 10.1007/BF01265311
  11. D.R. Hughes and F.C. Piper, Projective Planes, NewYork, 1973.
  12. D. E. Knuth, Finite semifields and projective planes, J. Algebra 2 1965, 182-217. doi: 10.1016/0021-8693(65)90018-9
  13. M. Lavrauw, On the isotopism classes of finite semifields, Finite Fields and Their Applications 14 2008, 897-910. doi: 10.1016/j.ffa.2008.05.002
Pages:
117-126
Main language of publication
English
Received
2016-06-15
Accepted
2016-04-17
Published
2016
Exact and natural sciences