ArticleOriginal scientific text

Title

Quasiorder lattices are five-generated

Authors 1

Affiliations

  1. University of Szeged, Bolyai Institute, Szeged, Aradi vértanúk tere 1, Hungary 6720

Abstract

A quasiorder (relation), also known as a preorder, is a reflexive and transitive relation. The quasiorders on a set A form a complete lattice with respect to set inclusion. Assume that A is a set such that there is no inaccessible cardinal less than or equal to |A|; note that in Kuratowski's model of ZFC, all sets A satisfy this assumption. Generalizing the 1996 result of Ivan Chajda and Gábor Czéedli, also Tamás Dolgos' recent achievement, we prove that in this case the lattice of quasiorders on A is five-generated, as a complete lattice.

Keywords

quasiorder lattice, preorder lattice, accessible cardinal

Bibliography

  1. G. Czédli, A Horn sentence for involution lattices of quasiorders, Order 11 (1994), 391-395. doi: 10.1007/BF01108770
  2. I. Chajda and G. Czédli, How to generate the involution lattice of quasiorders, Studia Sci. Math. Hungar. 32 (1996), 415-427.
  3. G. Czédli, Four-generated large equivalence lattices, Acta Sci. Math. 62 (1996), 47-69.
  4. G. Czédli, Lattice generation of small equivalences of a countable set, Order 13 (1996), 11-16. doi: 10.1007/BF00383964
  5. G. Czédli, (1+1+2)-generated equivalence lattices, J. Algebra 221 (1999), 439-462. doi: 10.1006/jabr.1999.8003
  6. T. Dolgos, Generating equivalence and quasiorder lattices over finite sets (in Hungarian) BSc Thesis, University of Szeged (2015).
  7. K. Kuratowski, Sur l'état actuel de l'axiomatique de la théorie des ensembles, Ann. Soc. Polon. Math. 3 (1925), 146-147.
  8. A. Levy, Basic Set Theory (Springer-Verlag, Berlin-Heidelberg-New York, 1979). doi: 10.1007/978-3-662-02308-2
  9. H. Strietz, Finite partition lattices are four-generated, Proc. Lattice Th. Conf. Ulm (1975), 257-259.
  10. H. Strietz, Über Erzeugendenmengen endlicher Partitionverbände, Studia Sci. Math. Hungar. 12 (1977), 1-17.
  11. G. Takách, Three-generated quasiorder lattices, Discuss. Math. Algebra and Stochastic Methods 16 (1996), 81-98.
  12. J. Tůma, On the structure of quasi-ordering lattices, Acta Universitatis Carolinae, Mathematica et Physica 43 (2002). doi: 65-74
  13. L. Zádori, Generation of finite partition lattices, Lectures in Universal Algebra, Colloquia Math. Soc. J. Bolyai 43 Proc. Conf. Szeged (1983) 573-586 (North Holland, Amsterdam-Oxfor.
Pages:
59-70
Main language of publication
English
Received
2015-10-29
Accepted
2015-11-05
Published
2016
Exact and natural sciences