A SHORT NOTE ON L_{CBA} —FUZZY LOGIC WITH A NON-ASSOCIATIVE CONJUNCTION

Miroslav Kolařík

Palacký University Olomouc, Faculty of Science Department of Computer Science Třída 17. listopadu 12, 77146 Olomouc, Czech Republic

e-mail: miroslav.kolarik@upol.cz

Abstract

We significantly simplify the axiomatic system L_{CBA} for fuzzy logic with a non-associative conjunction.

Keywords: axiomatic system, non-associativity, fuzzy logic.

2010 Mathematics Subject Classification: 06D35, 06F35, 03G10.

Several investigations in probability theory and the theory of expert systems show that it is important to search for some reasonable generalizations of fuzzy logics having a non-associative conjunction, see [5, 6, 8, 9, 10].

In the paper [1] Botur and Halaš introduced and described a non-associative fuzzy logic L_{CBA} having as an equivalent algebraic semantics lattices with section antitone involutions satisfying the contraposition law, so-called commutative basic algebras. The variety of commutative basic algebras was intensively studied in several recent papers and includes the class of MV-algebras. For more details see the book [2].

In [1] Botur and Halaš introduced a non-associative fuzzy logic L_{CBA} by the following nine axioms:

(i)
$$x \to (y \to x) = 1$$

(ii)
$$((x \to y) \to y) \to ((y \to x) \to x) = 1$$

(iii)
$$(\neg x \rightarrow \neg y) \rightarrow (y \rightarrow x) = 1$$

(iv)
$$\neg \neg x \to x = 1$$

(v)
$$(x \to y) \to (x \to \neg \neg y) = 1$$

(vi)
$$x \to x = 1$$

(vii)
$$(x = 1 \& x \rightarrow y = 1) \Rightarrow y = 1$$

114 M. Kolařík

(viii)
$$x \to y = 1 \Rightarrow (y \to z) \to (x \to z) = 1$$

(ix)
$$(x \rightarrow y = 1 \& y \rightarrow x = 1) \Rightarrow x = y$$
.

In the main theorem we significantly simplify the axiomatic system L_{CBA} for fuzzy logic with a non-associative conjunction. We show that three axioms can be omitted.

Theorem 1. Identities (iv), (v), (vi) follows from identities (i), (ii), (iii) and from quasiidentities (vii), (viii), (ix).

Proof. First, we show that (vi) is redundant. Using (viii) on (i) we easily obtain

$$(1) \qquad ((y \to x) \to x) \to (x \to x) = 1.$$

Using (viii) on (ii) we obtain

$$(2) \qquad (((y \to x) \to x) \to (x \to x)) \to (((x \to y) \to y) \to (x \to x)) = 1.$$

Applying (vii) on (1) and (2) we get

$$(3) \qquad ((x \to y) \to y)) \to (x \to x) = 1.$$

Further, using (viii) on (i) in the form $y \to ((x \to y) \to y) = 1$ we derive

$$(((x \to y) \to y) \to (x \to x)) \to (y \to (x \to x)) = 1.$$

Applying (vii) on (3) and (4) we get $y \to (x \to x) = 1$. From the last identity, where y := 1, using (vii), we obtain (vi).

Now, we show that (iv) is redundant. From (i), using (vi), we easily derive that

$$(5) x \to 1 = 1.$$

Putting y := 1 in (ii) and applying (5) we get

$$1 \to ((1 \to x) \to x) = 1,$$

which, by (vii), give us

$$(6) (1 \to x) \to x = 1.$$

From this and from (i) in the form $x \to (1 \to x) = 1$, we obtain

$$(7) 1 \to x = x.$$

by (ix). From (iii) and (viii) we infer

(8)
$$((y \to x) \to z) \to ((\neg x \to \neg y) \to z) = 1,$$

from (i) and (viii) we obtain

$$(9) \qquad ((y \to x) \to z) \to (x \to z) = 1,$$

and from (ii) and (ix) we have

$$(10) (x \to y) \to y = (y \to x) \to x.$$

Putting y := 1 in (iii) and applying (7) we get

$$(11) \qquad (\neg x \to \neg 1) \to x = 1.$$

From this, for $x := \neg 1$, we get immediately $(\neg \neg 1 \rightarrow \neg 1) \rightarrow \neg 1 = 1$. From (i), where $x := \neg 1$ and $y := \neg \neg 1$, we obtain $\neg 1 \rightarrow (\neg \neg 1 \rightarrow \neg 1) = 1$. Applying (ix) to the last two equations we conclude

$$\neg \neg 1 \rightarrow \neg 1 = \neg 1.$$

Applying (vii) to (11) and to (9), where $y := \neg x$, $x := \neg 1$ and z := x, we derive

$$\neg 1 \to x = 1.$$

Now, put $\neg 1$ instead of x and $x \rightarrow \neg \neg 1$ instead of y in (10) to obtain

$$(\neg 1 \rightarrow (x \rightarrow \neg \neg 1)) \rightarrow (x \rightarrow \neg \neg 1) = ((x \rightarrow \neg \neg 1) \rightarrow \neg 1) \rightarrow \neg 1.$$

The left hand side of the last identity can be reduced to $x \to \neg \neg 1$, using (13) and (7). The right hand side of the last identity is equal to 1, by (9), where y := x, $x := \neg \neg 1$ and $z := \neg 1$, using (12). Therefore, we have

$$(14) x \to \neg \neg 1 = 1.$$

From (14) we derive easily that $1 \to \neg \neg 1 = 1$ and from (5) we derive easily that $\neg \neg 1 \to 1 = 1$, whence, by (ix), we conclude

$$\neg \neg 1 = 1.$$

Putting $y := \neg x$, $x := \neg 1$ and z := x in (8) and applying (11) and (vii) we get

$$(\neg \neg 1 \rightarrow \neg \neg x) \rightarrow x = 1$$

which, by (15) and (5), give us (iv).

Finally, we show that also (v) is redundant. Using (vii) on (iii) in the form $(\neg\neg\neg x \to \neg x) \to (x \to \neg\neg x) = 1$ and on (iv) in the form $\neg\neg\neg x \to x = 1$ we get $x \to \neg\neg x = 1$. This with (iv) give us by (ix)

$$x = \neg \neg x$$
.

The last identity together with (vi) in the form $(x \to y) \to (x \to y) = 1$ proves (v).

116 M. Kolařík

Among the recent results on simplification of axiomatic systems related to fuzzy logics belong works of Cintula (based on a proof, see [3]) and Lehmke (applying a solver he programmed, see [7]). Both of them have shown the redundancy of one of the axioms of Hájek's axiomatization of BL-logics [4].

Conclusions

We briefly recalled what a non-associative fuzzy logic L_{CBA} is and where it can be useful. Then we significantly simplify the axiomatic system L_{CBA} for fuzzy logic with a non-associative conjunction as given in [1]. We show that three axioms can be omitted. Note that generally, the removal of the redundant axioms from a axiomatic system is desirable because it simplifies definitions and shortens proofs.

Note that although the independence of axioms is a highly desirable property, superfluous axioms still could be of use (as tautologies in the considered theory) when proving results in the considered theory, making proofs more transparent.

References

- [1] M. Botur and R. Halaš, Commutative basic algebras and non-associative fuzzy logics, Arch. Math. Logic 48 (2009) 243–255. doi:10.1007/s00153-009-0125-7
- [2] M. Botur, I. Chajda, R. Halaš, J. Kühr and J. Paseka, Algebraic Methods in Quantum Logic (Palacký University, Olomouc, 2014), 200 pages, ISBN 978-80-244-4166-5.
- [3] P. Cintula, Short note: on the redundancy of axiom (A3) in BL and MTL, Soft Computing 9 (2005) 942–942. doi:10.1007/s00500-004-0445-9
- [4] P. Hájek, Metamathematics of Fuzzy Logic, vol. 4 of Trends in Logic (Dordercht, Kluwer, 1998), 299 pages, ISBN 978-94-011-5300-3.
- [5] P. Hájek and R. Mesiar, On copulas, quasicopulas and fuzzy logic, Soft Computing 12 (2008) 1239–1243. doi:10.1007/s00500-008-0286-z
- [6] V. Kreinovich, Towards more realistic (e.g., non-associative) and- and or-operations in fuzzy logic, Soft Computing 8 (2004) 274–280. doi:10.1007/s00500-003-0272-4
- [7] S. Lehmke, Fun with automated proof search in basic propositional fuzzy logic, in: Abstracts of the Seventh International Conference FSTA 2004 (P.E. Klement, R. Mesiar, E. Drobná and F. Chovanec, eds.), (Liptovský Mikuláš), 2004, pp. 78–80.
- [8] R.B. Nelsen, An Introduction to Copulas (Springer-Verlag, New York, 2006), 286 pages, ISBN 978-0-387-28659-4.
- [9] R.R. Yager, Modelling holistic fuzzy implication using co-copulas, Fuzzy Optim. Decis. Making 5 (2006) 207–226. doi:10.1007/s10700-006-0011-2
- [10] H.H. Zimmerman and P. Zysno, Latent connectives in human decision making, Fuzzy Sets and Systems 4 (1980) 37–51. doi:10.1016/0165-0114(80)90062-7

Received 25 February 2016 Revised 10 March 2016