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Abstract

An ordered semigroup S is said to be principally ordered if, for every
x ∈ S there exists x? = max {y ∈ S | xyx 6 x}. Here we investigate those
principally ordered regular semigroups that are pointed in the sense that the
classes modulo Green’s relations L, R, D have biggest elements which are
idempotent. Such a semigroup is necessarily a semiband. In particular we
describe the subalgebra of (S; ?) generated by a pair of comparable idem-
potents that are D-related. We also prove that those D-classes which are
subsemigroups are ordered rectangular bands.

Keywords: regular semigroup, principally ordered, naturally ordered,
Green’s relations.

2010 Mathematics Subject Classification: 06F05, 20M17.

An ordered regular semigroup S is said to be principally ordered [3] if, for
every x ∈ S there exists x? = max {y ∈ S | xyx 6 x}. The basic properties of the
unary operation x 7→ x? in such a semigroup were established in [3] and are listed
in [1, Theorem 13.26]. In particular, we recall for the reader’s convenience that
in such a semigroup the following properties hold and will be used throughout
what follows:

(P1) (∀x ∈ S) x = xx?x;
(P2) every L-class [x]L contains a biggest idempotent, namely x?x;
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(P3) every R-class [x]R contains a biggest idempotent, namely xx?;

(P4) (∀x ∈ S)x??? = x?;

(P5) every x ∈ S has a biggest inverse, namely x◦ = x?xx?;

(P6) (∀x ∈ S)x◦ 6 x?;

(P7) (∀x ∈ S) x 6 x?? = x◦? = x?◦.

The point of departure for our investigation here is the following observation.

Theorem 1. If S is a principally ordered regular semigroup then the following
statements are equivalent:

(1) every L-class has a biggest element which is idempotent;

(2) (∀x ∈ S)x?x = max [x]L;

(3) every R-class has a biggest element which is idempotent;

(4) (∀x ∈ S)xx? = max [x]R;

(5) (∀x ∈ S)x2 6 x;

(6) (∀x ∈ S)x? ∈ E(S).

Moreover, if S satisfies any of the above conditions then

(7) (∀x ∈ S) max [x?]R = x? = x?? = max [x?]L;

(8) S is a semiband and Green’s relation H is equality;

(9) x ∈ S is completely regular if and only if x ∈ E(S).

Proof. (1) ⇔ (2): If (1) holds and e = e2 = max [x]L then, by (P2), e = e?e =
x?x whence (2) holds. The converse is clear.

(3)⇔ (4): This is dual to (1)⇔ (2).

(2)⇒ (5): If (2) holds then x 6 x?x gives, by (P1), x
2 6 xx?x = x.

(5) ⇒ (2): If (5) holds then x3 6 x2 6 x, so x 6 x?. Then xx? 6 x?2 6 x?

and consequently x = xx?x 6 x?x for every x ∈ S. Every y ∈ [x]L is then such
that y 6 y?y = x?x, whence it follows that x?x = max [x]L.

(4)⇔ (5): This is dual to (2)⇔ (5).

(5) ⇒ (6): Suppose that (5) holds. Then by the above so do (2) and (4).
Now if yRx then, by (4), we have y 6 xx? whence yx 6 xx?x = x. It follows by
(5) that xyx 6 x2 6 x and so y 6 x?. In particular, on taking y = xx? we obtain
xx? 6 x? for every x ∈ S. Replacing x by x?? in this, we obtain x??x? 6 x? and
it follows by (2) that x? = x??x? ∈ E(S).

(6) ⇒ (2): Clearly, every e ∈ E(S) is such that e 6 e?. Thus, if (6) holds
then x? 6 x?? and x?? 6 x??? = x?. Consequently x? = x?? for every x ∈ S.

We now observe that

y ≡ x(R) =⇒ y? = x?.
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Indeed, if y ≡ x(R) then, by (6), xx?y?x = yy?y?x = yy?x = xx?x = x whence
x?y? 6 x?. Then x?y?x? 6 x?2 = x? and consequently y? 6 x?? = x?. Inter-
changing x and y produces the reverse inequality and therefore y? = x?.

Taking in particular y = xx? we then have xx? 6 (xx?)? = x? whence x =
xx?x 6 x?x for every x ∈ S. If now z ∈ [x]L then it follows that z 6 z?z = x?x
and therefore x?x = max [x]L, which is (2).

Suppose now that the above conditions are satisfied.

(7) As shown in (6) ⇒ (2), x? = x?? ∈ E(S), and therefore x? = x??x?.
Then, by (4) and (P4), x

? = max [x??]R = max [x?]R. Dually, we see that also
x? = max [x?]L.

(8) Since, by (6), each x? is idempotent, we have x = xx?x = xx? ·x?x and so
every x ∈ S is a product of two idempotents, whence S is a semiband. Moreover,
if xH y then x = xx?x = xx? · x?x = yy? · y?y = yy?y = y whence H reduces to
equality.

(9) If x ∈ S is completely regular then there exists x′ ∈ V (x) such that
xx′ = x′x. Then, by (5), x′ = x′xx′ = x′2x 6 x′x from which it follows that
x = xx′x 6 xx′xx = x2 and consequently x ∈ E(S). The converse is clear.

Definition. We shall say that a principally ordered regular semigroup is pointed
whenever it satisfies any of the six equivalent properties of Theorem 1.

By way of providing a source of examples, we recall that the natural order
6n on the idempotents of a regular semigroup is defined by

e 6n f ⇐⇒ e = ef = fe,

and that an ordered regular semigroup (T ;6) is said to be naturally ordered if
the order 6 extends the natural order, in the sense that if e 6n f then e 6 f . In
this case, a fundamental property is that if e 6 f then e = efe; see, for example,
[1, Theorem 13.11].

Theorem 2. If T is a naturally ordered regular semigroup with a biggest idem-
potent ξ then the semiband 〈E(T )〉 is a pointed principally ordered regular semi-
group.

Proof. If e = e1 · · · en ∈ 〈E(T )〉 then, since ξ is the biggest element of 〈E(T )〉,
we have that eξe = e for every e ∈ E(T ), and consequently

e ξ e = e1 · · · enξe1 · · · en 6 e1ξe1 · · · en = e1 · · · en = e.

It follows that the regular subsemigroup 〈E(T )〉 is principally ordered with e ? = ξ
for every e ∈ 〈E(T )〉. Furthermore, e 2 = ee1e 6 e ξ e 6 e and it follows by
Theorem 1(5) that 〈E(T )〉 is pointed.
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To avoid unnecessary repetition throughout what follows, S will always de-
note a pointed principally ordered regular semigroup.

As we have seen above, a characteristic property of S is that the classes
modulo Green’s relations R and L have biggest elements which are idempotent.
We now show that the same is true for Green’s relation D.

Theorem 3. Green’s relation D on S is given by

(x, y) ∈ D ⇐⇒ x◦ = y◦.

Moreover, every D-class has a biggest element which is idempotent. Specifically,

(∀x ∈ S) x◦ = x◦◦ = max [x?x]R = max [xx?]L = max [x]D ∈ E(S).

Proof. As observed in the proof of Theorem 1, we have (xx?)? = x? and there-
fore, by Theorem 1(4),

x◦ = x?xx? = x?x(x?x)? = max [x?x]R ∈ E(S),

and dually for L. Moreover, by (P7) and Theorem 1(6,7),

x◦◦ = x◦?x◦x◦? = x??x?xx?x?? = x?xx? = x◦.

If now xD y then there exists z ∈ S such that xL zR y. Then x?x = z?z
and zz? = yy?. It follows from the above that x◦ = z◦ = y◦. On the other
hand, xLx?xRx◦ gives xD x◦. Consequently xD y ⇐⇒ x◦ = y◦. Finally,
by Theorem 1(2,4) we see that x 6 xx? 6 x?xx? = x◦ whence it follows that
x◦ = max [x]D ∈ E(S).

Theorem 4. (1) x ∈ S is a maximal idempotent if and only if it is a maximal
element;

(2) S contains at most one maximal element.

Proof. (1) Suppose that e is a maximal idempotent of S. If x ∈ S is such that
e 6 x then we have e 6 x 6 x? ∈ E(S), whence the hypothesis that e is maximal
in E(S) gives e = x. Thus e is a maximal element of S. Conversely, if x ∈ S is a
maximal element then x 6 x? gives x = x? whence, by Theorem 1(6), x ∈ E(S).

(2) Let e and f be maximal elements of S. By (1), each is then idempotent.
Now, by Theorem 1(5), ef ·e·ef = (ef)2 6 ef and gives e 6 (ef)?. It follows that
e = (ef)? and likewise e = (fe)?. Similarly, f = (fe)? = (ef)? and consequently
e = f .

By [4, Theorem 3.3], a principally ordered regular semigroup is naturally
ordered if and only if the assignment x 7→ x? is antitone. In this case, as shown
in [1, Theorem 13.29], each (xx?)? is a maximal idempotent. Using this fact in
the case where S is pointed, we obtain the following characterisation.
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Theorem 5. The following statements are equivalent:

(1) S is naturally ordered;

(2) S has a biggest element ξ and x? = ξ for every x ∈ S.

Proof. (1) ⇒ (2): If (1) holds then each (xx?)? = x? is a maximal idempotent
and x 6 x?. Then property (2) follows immediately from Theorem 4.

(2)⇒ (1): Suppose conversely that (2) holds and let e, f ∈ E(S) be such that
e 6n f . By (2), e? = ξ = f? and consequently e = ef = fef 6 fe?f = ff?f = f .
Thus S is naturally ordered.

Corollary. If S is naturally ordered then Green’s relations D and J coincide.

Proof. By Theorem 5, (x2)? = ξ = x?. Consequently, x2 = x2(x2)?x2 =
x2x?x2 = x3. Then x2 ∈ E(S) and so S is group bound. It follows by [6,
Theorem 1.2.20] that D and J coincide.

Consider now the subset S? = {x? | x ∈ S}. This is related to the subset S◦

and to the set C = {x ∈ S | x? = x◦} of compact elements as follows.

Theorem 6. S? = C ∩ S◦.

Proof. The identity x?? = x?◦ shows that S? ⊆ C. Similarly, x? = x??? = x??◦ =
x?◦◦ shows that S? ⊆ S◦. Thus S? ⊆ C ∩ S◦. Conversely, if x ∈ C ∩ S◦ then
x? = x◦ and x = x◦◦, whence x = x◦◦ = x?◦ = x?? ∈ S?.

As the following example shows, S? is not in general a subsemigroup of S.

Example 1. Let L be a lattice and consider the cartesian ordered set

L[2] = {(x, y) ∈ L× L | y 6 x}.

With respect to the multiplication defined by

(x, y)(a, b) = (x ∨ a, y ∧ b),

it is clear that L[2] is an ordered band. It is readily verified that L[2] is principally
ordered with (x, y)? = (x, x). By Theorem 1(5), L[2] is pointed with (L[2])? =
{(x, x) | x ∈ L}. Now (L[2])? is not a subsemigroup, for clearly (x, y)?(a, b)? =
(x∨ a, x∧ a) and this belongs to (L[2])? if and only if x = a. The particular case
of N[2] is illustrated as follows:

r q q qr q qr qr
. . .

. . .

. . .

. . .

(0, 0)

(1, 1)

(2, 2)

(3, 3)



106 T.S. Blyth and G.A. Pinto

However, in the presence of an identity element 1 the subset S? has a partic-
ular description.

Theorem 7. If S has an identity element 1, then S? = {x ∈ S | 1 6 x} and is a
join semilattice in which x ∨ y = xy.

Proof. If x ∈ S, then since x1x = x2 6 x we have 1 6 x?. Conversely, let 1 6 x.
Then

x? =

{
1x? 6 xx? 6 x?x? = x? whence x? = xx?;

x?1 6 x?x 6 x?x? = x? whence x? = x?x.

Hence x?H x and so x? = x by Theorem 1(8). Thus we see that S? = {x ∈
〈E(S)〉 | 1 6 x} and is a sub-band. Now if x, y ∈ S? then x = x1 6 xy and
y = 1y 6 xy, so that xy is an upper bound for {x, y}. Furthermore, if z ∈ S
is any upper bound for {x, y} then necessarily z ∈ S? whence xy 6 z2 = z.
Consequently, S? is a join semilattice in which x ∨ y = xy.

Example 2. Let 3 denote the 3-element chain 0 < 1 < 2 and consider the
ordered regular semigroup consisting of those isotone mappings f on 3 which
are such that f(0) = 0. Equivalently, this is the semigroup Res 3 of residuated
mappings on 3 [2]. It has the following Hasse diagram and Cayley table, in which
[0 a b] denotes the mapping f such that f(0) = 0, f(1) = a, f(2) = b.

s0 [0 0 0]

sg [0 0 2] sf [0 1 1]sa [0 0 1]

se [0 1 2]

su [0 2 2]

�
�

@
@
�
�

@
@

u e f g a 0

u u u u g g 0
e u e f g a 0
f f f f a a 0
g u g 0 g 0 0
a f a 0 a 0 0
0 0 0 0 0 0 0

This semiband is principally ordered and pointed, with identity element e. Here
we have x? = u for x 6= e and e? = e, so that S? = {e, u}.

Example 3. Consider, for n > 2, the ordered semigroup Bn of n × n matrices
with entries in a boolean algebra B. For the basic operations in B we use the
notation a+ b (for a ∨ b) and ab (for a ∧ b).

As shown in [1], this semigroup is regular if and only if n = 2. Moreover, as
is established in [5], B2 is principally ordered with[

a b
c d

]?
=

[
b′ + c′ + d a′ + d′ + b
a′ + d′ + c b′ + c′ + a

]
.
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The set of idempotents is

E(B2) =

{[
a b
c d

]
| b+ c 6 a+ d, bc 6 ad

}
,

and the regular subsemigroup they generate is

〈E(B2)〉 =

{[
a b
c d

]
| bc 6 ad

}
.

The semiband 〈E(B2)〉 is also principally ordered and pointed. This follows
from Theorem 1 and the observation that bc 6 ad gives b′ + c′ > a′ + d′ whence[

a b
c d

]?
=

[
1 a′ + d′ + b

a′ + d′ + c 1

]
∈ E(B2).

Since B2 has an identity element it follows from Theorem 7 that 〈E(B2)〉? is
the join semilattice

〈E(B2)〉? = {X ∈ B2 | I2 6 X} =

{[
1 x
y 1

]
| x, y ∈ B

}
.

We can also identify the compact elements of 〈E(B2)〉. For this we recall

from (P5) that every X =

[
a b
c d

]
in B2 has a biggest inverse, namely

X◦ = X?XX? =

[
b′(a+ c) + c′(a+ b) + d a′(c+ d) + d′(a+ c) + b
a′(b+ d) + d′(a+ b) + c b′(c+ d) + c′(b+ d) + a

]
.

In particular, if X ∈ 〈E(B2)〉 then the inequality bc 6 ad gives d = d + bc and
a = a+ bc, so that we obtain

X◦ =

[
a+ b+ c+ d a′(c+ d) + d′(a+ c) + b

a′(b+ d) + d′(a+ b) + c a+ b+ c+ d

]
.

Thus, if X ∈ 〈E(B2)〉 is compact then necessarily a+ b+ c+ d = 1. Conversely,
if the property a+ b+ c+ d = 1 holds then

a′(c+ d) + d′(a+ c) + b > a′(a+ b)′ + d′(b+ d)′ + b

= a′b′ + b′d′ + b

= a′ + d′ + b.

Clearly, the reverse inequality holds, so that a′(c+ d) + d′(a+ c) + b = a′+ d′+ b.
Likewise, we see that a′(b + d) + d′(a + b) + c = a′ + d′ + c and consequently
X◦ = X?. Hence the set of compact elements of 〈E(B2)〉 is

C =

{[
a b
c d

]
∈ 〈E(B2)〉 | a+ b+ c+ d = 1

}
.
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We now turn attention to the D-classes of S. For idempotents e, f with e 6 f
and (e, f) ∈ D we first focus on the structure of the subalgebra of (S; ?) generated
by {e, f}. In this connection the following observation is important.

Theorem 8. Any two comparable D-related idempotents of S are mutually in-
verse.

Proof. Let e, f ∈ E(S) be such that e 6 f and eD f . Then, by Theorem 3,
e◦ = f◦. Consequently, by Theorem 1(7) and (P7), e

? = e?? = e◦? = f◦? = f?? =
f?. Moreover, the idempotents e◦ and e? are such that e◦e? = e◦ = e?e◦, whence
e◦ 6n e

?.

We first observe that e = eee 6 efe 6 ef?e = ee?e = e so that e = efe.

Consider now fee?. That fee? ∈ E(S) follows from the inequalities

fee? = fee?eee? 6 fee? · fee? 6 fff?fee? = fee?.

Now fee? · e◦ = fee◦ = fee? and

e◦ · fee?
{

6 f◦ffe? = f◦ff? = f◦ff◦ = f◦ = e◦;

> e◦ee? = e◦ee◦ = e◦,

so that e◦ · fee? = e◦. Consequently fee? L e◦ = f◦ L ff?.
Furthermore, fee? · ff? = fef?ff? = fef◦ = fee◦ = fee? and ff? · fee? =

fee? show that fee? 6n ff
?. Since these idempotents are also L-equivalent it

follows that fee? = ff?.
Using the above observations, we see that fef · ff? = feff? = fefee? =

fee? = ff? whence fef R ff? R f . Since fef ∈ E(S) with fef 6n f it follows
that f = fef .

Thus e and f are mutually inverse.

Corollary. The following statements are equivalent:

(1) S is completely simple;

(2) S is compact and naturally ordered.

Proof. (1) ⇒ (2): If S is completely simple then, since 6n reduces to equality,
S is trivially naturally ordered. Since the idempotents x◦, x? are such that x◦ 6n

x?, it follows that x◦ = x? and therefore S is compact.
(2)⇒ (1): Suppose that (2) holds and that e, f ∈ E(S) are such that e 6n f .

By Theorem 5, S has a biggest element ξ and f? = ξ = e?. Compactness now
gives f◦ = e◦ whence, by Theorem 3, (e, f) ∈ D. Since also the natural order
implies that e 6 f , it follows by Theorem 8 that the idempotents e and f are
mutually inverse. Consequently, f = fef = e. Thus 6n reduces to equality and
S is completely simple.
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Theorem 9. Let e, f be idempotents of S such that e 6 f and eD f . If T is
the subalgebra of (S; ?) generated by {e, f} then T is a band having at most 10
elements. In the case where T has precisely 10 elements it is represented by the
Hasse diagram

rr rr r rr rrr

�
�
�

@
@

@
�
�
�

�
�
�

@
@

@
@

@
@

e

fe ef

e?e f ee?

f?f ff?
e◦ = f◦
e? = f?

in which elements joined by lines of positive gradient are R-related, those joined
by lines of negative gradient are L-related, and the vertical line also indicates 6n.

Proof. Since eD f it follows from Theorem 3 that e◦ = f◦ whence e? = f?.
The elements of T are then finite products of the elements e, f and e?[= f?].
Moreover, since e 6 f , every x ∈ T is such that e 6 x 6 e?. By Theorem 8, e
and f are mutually inverse, so for every x ∈ T we have

f = fef 6 fxf 6 fe?f = ff?f = f

whence f = fTf . In a similar way we see that e = eTe and likewise

ee? = eTe?, e?e = e?Te, ff? = fTf?, f?f = f?Tf, ef = eTf, fe = fTe.

For example, ee? = eee? 6 exe? 6 ee?e? = ee? gives ee? = eTe?. It follows
from this that ee? = efe? = eff? whence ee?f = ef and then ef = eef 6
exf 6 ee?f = ef and consequently ef = eTf . Finally, it is readily seen from the
above that e?Te? = {e◦, e?}. It now follows from these observations that T is a
band which consists of at most 10 elements, has precisely two D-classes, and is
as described in the above Hasse diagram.

Example 4. In the semigroup 〈E(B2)〉 of Example 3, let |B| > 8 and consider
the idempotents

e =

[
a 0
0 0

]
, f =

[
a b
b b

]
where 0 < b < a < 1.

Simple calculations which use the expressions for X? and X◦ given in Example 3

reveal that e? =

[
1 1
1 1

]
= f?, and that e◦ =

[
a a
a a

]
= f◦ whence eD f with e < f .
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Furthermore,

ee? =

[
a a
0 0

]
, ff? =

[
a a
b b

]
, e?e =

[
a 0
a 0

]
, f?f =

[
a b
a b

]
, ef =

[
a b
0 0

]
, fe =

[
a 0
b 0

]
.

Consequently we have a copy of the band depicted in Theorem 9.

We now proceed to describe the structure of those D-classes that are sub-
semigroups of S (which is the case for De in Theorem 9, but not so for Du in
Example 2 since gf = 0).

Theorem 10. Given e ∈ E(S), suppose that De is a subsemigroup of S. Then
Le◦ is a left zero semigroup, Re◦ is a right zero semigroup, and De is isomorphic
to the ordered rectangular band Le◦×Re◦.

Proof. We observe first that, since x◦ = e◦ for every x ∈ De,

x ∈ Le◦ ⇐⇒ x◦x = e◦ ⇐⇒ x = xx◦ ∈ De;

x ∈ Re◦ ⇐⇒ xx◦ = e◦ ⇐⇒ x = x◦x ∈ De.

If therefore x, y ∈ Le◦ we have xy = xx◦y = xe◦y = xy◦y = xe◦ = xx◦ = x and
consequently Le◦ is a left zero semigroup. Likewise, Re◦ is a right zero semigroup.
Then

Le◦×Re◦ = {(xe◦, e◦y) | x, y ∈ De}

is a rectangular band. Consider therefore the mapping ϑ : De → Le◦×Re◦ given
by the prescription ϑ(x) = (xe◦, e◦x), which is clearly isotone.

Now if (a, b) ∈ Le◦×Re◦ then, since ab ∈ De by the hypothesis with

ϑ(ab) = (abe◦, e◦ab) = (abb◦, a◦ab) = (ae◦, e◦b) = (a, b),

we see that ϑ is surjective. Moreover,

ϑ(x) 6 ϑ(y) ⇐⇒ xe◦ 6 ye◦, e◦x 6 e◦y

⇐⇒ x = xe◦x 6 ye◦y = y.

It follows from these observations that ϑ is an order isomorphism.
We now observe that if e, f are D-equivalent idempotents such that e 6n f

then e = ef = fe 6 fe◦ = ff◦ and consequently e = ef 6 ff◦f = f . Thus
De is a naturally ordered regular semigroup with a biggest idempotent e◦. Since
(xy)◦ = e◦ = y◦x◦ for all x, y ∈ De, it follows by [1, Theorem 13.18] that e◦ is a
middle unit of De. Using this fact, we see that

ϑ(x)ϑ(y) = (xe◦, e◦x)(ye◦, e◦y) = (xe◦ye◦, e◦xe◦y) = (xye◦, e◦xy) = ϑ(xy),

whence we conclude that ϑ defines an ordered semigroup isomorphism De '
Le◦×Re◦ .
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