Discussiones Mathematicae General Algebra and Applications 35 (2015) 177–193 doi:10.7151/dmgaa.1242

IF-FILTERS OF PSEUDO-BL-ALGEBRAS

MAGDALENA WOJCIECHOWSKA-RYSIAWA

Institute of Mathematics and Physics University of Natural Sciences and Humanities 3 Maja 54, 08-110 Siedlee, Poland

e-mail: magdawojciechowska6@wp.pl

Abstract

Characterizations of IF-filters of a pseudo-BL-algebra are established. Some related properties are investigated. The notation of prime IF- filters and a characterization of a pseudo-BL-chain are given. Homomorphisms of IF-filters and direct product of IF-filters are studied.

Keywords: pseudo-BL-algebra, filter, IF-filter, prime IF-filters, pseudo-BL-chain, homomorphism, direct product.

2010 Mathematics Subject Classification: 03G25, 06F35.

1. INTRODUCTION

In 1958, Chang [2] gave a notation and a characterization of MV-algebras. In 1998, Hájek [8] introduced BL-algebras, which contain the class of MV-algebras. Georgescu and Iorgulescu [5] and independently Rachunek [10] introduced pseudo MV-algebras as a noncommutative extension of MV-algebras. Finally, in 2000 there were given a notion of pseudo-BL-algebras, which are a noncommutative extension of BL-algebras. Some important properties of pseudo-BL-algebras were studied in [3, 4] and [7].

Zadeh [14] introduced fuzzy sets. Fuzzy sets and filters of pseudo-BL-algebras were studied in [11] and anti fuzzy filters were investigated in [13]. In 1983, Atanassov [1] gave a notion of intuitionistic fuzzy sets as a generalization of fuzzy sets. Takeuti and Titants [12] introduced a intuitionistic fuzzy logic.

In this paper, we introduce a notation of intuitionistic fuzzy filters of pseudo-BL-algebras and study their properties. We introduce prime intuitionistic fuzzy filters and using them we give a characterization of a pseudo-BL-chain.We investigate a homomorphism of intuitionistic fuzzy filters. Finally, we study a direct product of intuitionistic fuzzy filters. We will write shortly IF-filters instead of intuitionistic fuzzy filters.

2. Preliminaries

Definition 1. In [6], there were introduced a pseudo-BL-algebra A as an algebra $(A, \lor, \land, \odot, \rightarrow, \rightsquigarrow, 0, 1)$ of type (2, 2, 2, 2, 2, 0, 0) satisfying the following axioms for all $x, y, z \in A$:

- (C1) $(A, \lor, \land, 0, 1)$ is a bounded lattice;
- (C2) $(A, \odot, 1)$ is a monoid;
- (C3) $x \odot y \le z \Leftrightarrow x \le y \to z \Leftrightarrow y \le x \rightsquigarrow z;$
- (C4) $x \wedge y = (x \rightarrow y) \odot x = x \odot (x \rightsquigarrow y);$
- (C5) $(x \to y) \lor (y \to x) = (x \rightsquigarrow y) \lor (y \rightsquigarrow x) = 1.$

Lemma 1 ([7]). Let $(A, \lor, \land, \odot, \rightarrow, \rightsquigarrow, 0, 1)$ be a pseudo-BL-algebra. Then for all $x, y, z \in A$:

- (i) $y \leq x \rightarrow y$ and $y \leq x \rightsquigarrow y$;
- (ii) $x \odot y \le x \land y;$
- (iii) $x \odot y \le x$ and $x \odot y \le y$;
- (iv) $x \to 1 = x \rightsquigarrow 1 = 1;$
- (v) $x \le y \Leftrightarrow x \to y = x \rightsquigarrow y = 1;$
- (vi) $x \to x = x \rightsquigarrow x = 1;$
- (vii) $x \to (y \to z) = (x \odot y) \to z$ and $x \rightsquigarrow (y \rightsquigarrow z) = (y \odot x) \rightsquigarrow z$.

We will write shortly A instead of $(A, \lor, \land, \odot, \rightarrow, \leadsto, 0, 1)$.

Definition 2. A nonempty subset F of a pseudo-BL-algebra A is called a filter if it satisfies the following two conditions:

- (F1) if $x, y \in F$, then $x \odot y \in F$;
- (F2) if $x \in F$ and $x \leq y$, then $y \in F$.

A filter F of a pseudo-BL-algebra A is called *proper* if $F \neq A$. The proper filter F is prime if for all $x, y \in A$

$$x \lor y \in F$$
 implies $(x \in F \text{ or } y \in F)$.

Now, we give definitions of a fuzzy filter and an anti fuzzy filter of a pseudo-BL-algebra A and their some properties.

Recall that a *fuzzy set* of A is a function $\nu : A \to [0, 1]$. For any fuzzy set ν and real number $\alpha \in [0, 1]$ there are defined two sets:

$$U(\nu, \alpha) = \{ x \in A : \nu(x) \ge \alpha \};$$

$$L(\nu, \alpha) = \{ x \in A : \nu(x) \le \alpha \};$$

which are called an upper and a lower α -level set of ν .

Definition 3. Let ν be a fuzzy set of pseudo-BL-algebra A. A *complement* of ν is the fuzzy set ν^C defined as follows

$$\nu^C(x) = 1 - \nu(x)$$

for any $x \in A$.

A fuzzy set μ is called:

- 1. a fuzzy filter, if for all $x, y \in A$
 - (ff1) $\mu(x \odot y) \ge \mu(x) \land \mu(y);$ (ff2) $x \le y \Rightarrow \mu(x) \le \mu(y).$
- 2. an anti fuzzy filter, if for all $x, y \in A$
 - (af1) $\mu(x \odot y) \le \mu(x) \lor \mu(y);$
 - (af2) $x \le y \Rightarrow \mu(y) \le \mu(x)$.

Remark 1. Let μ and ν be a fuzzy sets of a pseudo-BL-algebra A. Then:

- (i) μ is a fuzzy filter of A iff μ^C is an anti fuzzy filter of A;
- (ii) ν is an anti fuzzy filter of A iff ν^C is a fuzzy filter of A.

Definition 4 ([11]). Let F be a filter of a pseudo-BL-algebra A and $\alpha, \beta \in [0, 1]$ such that $\alpha > \beta$. Let us define a fuzzy filter $\mu_F(\alpha, \beta)$ as follows

$$\mu_{F}(\alpha,\beta)(x) = \begin{cases} \alpha \text{ if } x \in F, \\ \beta \text{ otherwise.} \end{cases}$$

Remark 2 ([13]). A fuzzy set $\mu_F^C(\alpha, \beta)$ is an anti fuzzy filter of A.

We denote by χ_F the characteristic function of F and by χ_F^C the complement of the characteristic function of F.

Definition 5. Let A be a pseudo-BL-algebra and ν be a fuzzy filter of A. Then ν is called a *fuzzy prime filter* if

$$\nu(x \lor y) = \nu(x) \lor \nu(y)$$

for all $x, y \in A$.

Definition 6. Let A be a pseudo-BL-algebra and μ be an anti fuzzy filter of A. Then μ is called an anti fuzzy prime filter if

$$\mu(x \lor y) = \mu(x) \land \mu(y)$$

for all $x, y \in A$.

For a fuzzy filter ν of pseudo-BL-algebra A we define a set

$$M_{\nu} = \{ x \in A : \nu(x) = \nu(1) \}$$

and similarly, for an anti fuzzy filter μ we define a set

$$A_{\mu} = \{ x \in A : \mu(x) = \mu(1) \}.$$

Remark 3. It is proved in [11] and [13] that a fuzzy filter ν of A is a fuzzy prime filter (an anti fuzzy filter μ of A is an anti fuzzy prime filter) iff M_{ν} (A_{μ}) is a prime filter of A.

3. IF-FILTERS

Definition 7. A mapping $\mathcal{B} : A \to [0, 1] \times [0, 1]$ such that $\mathcal{B}(x) = (\nu_{\mathcal{B}}(x), \mu_{\mathcal{B}}(x))$, in which $\nu_{\mathcal{B}}(x) + \mu_{\mathcal{B}}(x) \leq 1$ for any $x \in A$, is called an IF-set of A.

In particular, we use 0_{\sim} and 1_{\sim} to denote the IF-empty set and the IF-whole set in a set A such that $0_{\sim}(x) = (0; 1)$ and $1_{\sim}(x) = (1; 0)$ for each $x \in A$, respectively.

For IF-sets $\mathcal{B} = (\nu_{\mathcal{B}}, \mu_{\mathcal{B}})$ and $\mathcal{C} = (\nu_{\mathcal{C}}, \mu_{\mathcal{C}})$ we define a relation \leq as follows:

$$\mathcal{B} \leq \mathcal{C} \Leftrightarrow (\nu_{\mathcal{B}}(x) < \nu_{\mathcal{C}}(x) \text{ or } (\nu_{\mathcal{B}}(x) = \nu_{\mathcal{C}}(x) \text{ and } \mu_{\mathcal{B}}(x) < \mu_{\mathcal{C}}(x)) \text{ for any } x \in A).$$

Now, we give the definition of an IF-filter of a pseudo-BL-algebra. From this place an IF-set $\mathcal{B} = (\nu_{\mathcal{B}}, \mu_{\mathcal{B}})$ will be denoted by \mathcal{B} .

Definition 8. An IF-set \mathcal{B} of pseudo-BL-algebra A is an IF-filter of A if it satisfies the following conditions for all $x, y \in A$:

- (IF1) $\nu_{\mathcal{B}}(x \odot y) \ge \nu_{\mathcal{B}}(x) \land \nu_{\mathcal{B}}(y);$
- (IF2) $\mu_{\mathcal{B}}(x \odot y) \le \mu_{\mathcal{B}}(x) \lor \mu_{\mathcal{B}}(y);$
- (IF3) $x \leq y \Rightarrow (\nu_{\mathcal{B}}(x) \leq \nu_{\mathcal{B}}(y) \text{ and } \mu_{\mathcal{B}}(x) \geq \mu_{\mathcal{B}}(y)).$

Remark 4. An IF-set \mathcal{B} of a pseudo-BL-algebra A is an IF-filter of A iff $\nu_{\mathcal{B}}$ is a fuzzy filter and $\mu_{\mathcal{B}}$ is an anti fuzzy filter of A.

It is easy to see, that (IF3) implies

- (IF4) $\nu_{\mathcal{B}}(x) \leq \nu_{\mathcal{B}}(1)$ and $\mu_{\mathcal{B}}(x) \geq \mu_{\mathcal{B}}(1)$ for every $x \in A$;
- (IF4') $\nu_{\mathcal{B}}(0) \leq \nu_{\mathcal{B}}(x)$ and $\mu_{\mathcal{B}}(0) \geq \mu_{\mathcal{B}}(x)$ for every $x \in A$.

Proposition 1. Let \mathcal{B} be an IF-set of a pseudo-BL-algebra A. Then \mathcal{B} is an IF-filter of A iff $\mathcal{B}_C = (\nu_{\mathcal{B}}, \nu_{\mathcal{B}}^C)$ and $_C\mathcal{B} = (\mu_{\mathcal{B}}^C, \mu_{\mathcal{B}})$ are IF-filters of A.

Proof. \Rightarrow : Let \mathcal{B} be an IF-set of a pseudo-BL-algebra A. By Remark 4 $\nu_{\mathcal{B}}$ is a fuzzy filter and $\mu_{\mathcal{B}}$ is an anti fuzzy filter of A. Then $\nu_{\mathcal{B}}^C$ is an anti fuzzy filter and $\mu_{\mathcal{B}}^C$ is a fuzzy filter of A. Using Remark 4 once again we obtain that $\mathcal{B}_C = (\nu_{\mathcal{B}}, \nu_{\mathcal{B}}^C)$ and $_C\mathcal{B} = (\mu_{\mathcal{B}}^C, \mu_{\mathcal{B}})$ are IF-filters of A. \Leftarrow : By Remark 4.

Example 1. Let *F* be a filter of a pseudo-BL-algebra *A* and $\mathcal{B}(F) = (\nu_{\mathcal{B}(F)}, \mu_{\mathcal{B}(F)})$ be an IF-set of *A* defined as follows

$$\nu_{\mathcal{B}(F)}(x) := \begin{cases} \alpha \text{ if } x \in F; \\ \beta \text{ otherwise} \end{cases} \text{ and } \mu_{\mathcal{B}(F)}(x) := \begin{cases} \alpha_1 \text{ if } x \in F; \\ \beta_1 \text{ otherwise.} \end{cases}$$

where $\alpha, \alpha_1, \beta, \beta_1 \in [0, 1]$, $\alpha > \beta, \alpha_1 < \beta_1$ and $\alpha + \alpha_1, \beta + \beta_1 \le 1$.

By Definition 4 and Remark 2, $\nu_{\mathcal{B}(F)}$ is a fuzzy filter of A and $\mu_{\mathcal{B}(F)}$ is an anti fuzzy filter of A. Hence, by Remark 4, $\mathcal{B}(F)$ is an IF-filter of A.

Proposition 2. Let $\mathcal{B} = (\nu_{\mathcal{B}}, \mu_{\mathcal{B}})$ be an *IF*-filter of a pseudo-*BL*-algebra *A*, then for all $x, y \in A$:

- (i) $\nu_{\mathcal{B}}(x \lor y) \ge \nu_{\mathcal{B}}(x) \land \nu_{\mathcal{B}}(y);$
- (ii) $\nu_{\mathcal{B}}(x \wedge y) = \nu_{\mathcal{B}}(x) \wedge \nu_{\mathcal{B}}(y);$
- (iii) $\nu_{\mathcal{B}}(x \odot y) = \nu_{\mathcal{B}}(x) \land \nu_{\mathcal{B}}(y);$
- (iv) $\mu_{\mathcal{B}}(x \wedge y) = \mu_{\mathcal{B}}(x) \vee \mu_{\mathcal{B}}(y);$
- (v) $\mu_{\mathcal{B}}(x \odot y) = \mu_{\mathcal{B}}(x) \lor \mu_{\mathcal{B}}(y);$
- (vi) $\mu_{\mathcal{B}}(x \lor y) \le \mu_{\mathcal{B}}(x) \lor \mu_{\mathcal{B}}(y).$

Proof. By Lemma 1 (ii) $x \odot y \leq x \land y \leq x \lor y$. Then, by definition of an IFfilter, $\nu_{\mathcal{B}}(x) \land \nu_{\mathcal{B}}(y) \leq \nu_{\mathcal{B}}(x \odot y) \leq \nu_{\mathcal{B}}(x \land y) \leq \nu_{\mathcal{B}}(x \lor y)$ and $\mu_{\mathcal{B}}(x) \lor \mu_{\mathcal{B}}(y) \geq \mu_{\mathcal{B}}(x \odot y) \geq \mu_{\mathcal{B}}(x \land y) \geq \mu_{\mathcal{B}}(x \lor y)$. (i) and (vi) are proved. Applying Lemma 1 (iii), we have $\nu_{\mathcal{B}}(x) \land \nu_{\mathcal{B}}(y) \leq \nu_{\mathcal{B}}(x \odot y) \leq \nu_{\mathcal{B}}(x \land y) \leq \nu_{\mathcal{B}}(x) \land \nu_{\mathcal{B}}(y)$ and $\mu_{\mathcal{B}}(x) \lor \mu_{\mathcal{B}}(y) \geq \mu_{\mathcal{B}}(x \odot y) \geq \mu_{\mathcal{B}}(x \land y) \geq \mu_{\mathcal{B}}(x) \lor \mu_{\mathcal{B}}(y)$. The proofs for (ii), (iii), (iv) and (v) are finished. **Proposition 3.** An IF-set \mathcal{B} of a pseudo-BL-algebra A is an IF-filter of A if and only if it satisfies (IF1), (IF2) and

(IF5) $\nu_{\mathcal{B}}(x \lor y) \ge \nu_{\mathcal{B}}(x)$ and $\mu_{\mathcal{B}}(x \lor y) \le \mu_{\mathcal{B}}(x)$ for all $x, y \in A$.

Proof. \Rightarrow : Let us suppose that \mathcal{B} is an IF-filter of A. Then, by (IF3), $\nu_{\mathcal{B}}(x \lor y) \ge \nu_{\mathcal{B}}(x)$ and $\mu_{\mathcal{B}}(x \lor y) \le \mu_{\mathcal{B}}(x)$ for all $x, y \in A$.

 \Leftarrow : Conversely, let \mathcal{B} satisfies (IF1), (IF2) and (IF5). We need to show that \mathcal{B} satisfies (IF3). Let $x, y \in A$ be such that $x \leq y$. By (IF5) we have $\nu_{\mathcal{B}}(y) = \nu_{\mathcal{B}}(x \lor y) \ge \nu_{\mathcal{B}}(x)$ and $\mu_{\mathcal{B}}(y) = \mu_{\mathcal{B}}(x \lor y) \le \mu_{\mathcal{B}}(x)$. Hence (IF3) is satisfied.

Theorem 1. Let \mathcal{B} be an IF-set of a pseudo-BL-algebra A. The following are equivalent:

- (i) \mathcal{B} is an IF-filter;
- (ii) \mathcal{B} satisfies (IF3) and for all $x, y \in A$

(1)
$$\nu_{\mathcal{B}}(y) \ge \nu_{\mathcal{B}}(x) \wedge \nu_{\mathcal{B}}(x \to y),$$

(2)
$$\mu_{\mathcal{B}}(y) \le \mu_{\mathcal{B}}(x) \lor \mu_{\mathcal{B}}(x \to y),$$

(iii) \mathcal{B} satisfies (IF3) and for all $x, y \in A$

(3)
$$\nu_{\mathcal{B}}(y) \ge \nu_{\mathcal{B}}(x) \wedge \nu_{\mathcal{B}}(x \rightsquigarrow y),$$

(4)
$$\mu_{\mathcal{B}}(y) \le \mu_{\mathcal{B}}(x) \lor \mu_{\mathcal{B}}(x \rightsquigarrow y).$$

Proof. Using Remark 4 of this paper, Proposition 3.3 and Corollary 3.4 of [13] and Theorem 3.3 of [11] we have the thesis.

Proposition 4. Let \mathcal{B} be an IF-set of a pseudo-BL-algebra A. The following are equivalent:

- (i) \mathcal{B} is an IF-filter;
- (ii) for all $x, y, z \in A$

(5)
$$x \to (y \to z) = 1 \Rightarrow \nu_{\mathcal{B}}(z) \ge \nu_{\mathcal{B}}(x) \land \nu_{\mathcal{B}}(y),$$

(6)
$$x \to (y \to z) = 1 \Rightarrow \mu_{\mathcal{B}}(z) \le \mu_{\mathcal{B}}(x) \lor \mu_{\mathcal{B}}(y).$$

(iii) for all $x, y, z \in A$

(7)
$$x \rightsquigarrow (y \rightsquigarrow z) = 1 \Rightarrow \nu_{\mathcal{B}}(z) \ge \nu_{\mathcal{B}}(x) \land \nu_{\mathcal{B}}(y),$$

(8)
$$x \rightsquigarrow (y \rightsquigarrow z) = 1 \Rightarrow \mu_{\mathcal{B}}(z) \le \mu_{\mathcal{B}}(x) \lor \mu_{\mathcal{B}}(y).$$

Proof. (i) \Rightarrow (ii) Suppose that \mathcal{B} is an IF-filter of a pseudo-BL-algebra A. Let $x, y, z \in A$ be such that $x \to (y \to z) = 1$. By Theorem 1 (ii)

- (9) $\nu_{\mathcal{B}}(y \to z) \ge \nu_{\mathcal{B}}(x) \land \nu_{\mathcal{B}}(x \to (y \to z)) = \nu_{\mathcal{B}}(x) \land \nu_{\mathcal{B}}(1) = \nu_{\mathcal{B}}(x),$
- (10) $\mu_{\mathcal{B}}(y \to z) \le \mu_{\mathcal{B}}(x) \lor \mu_{\mathcal{B}}(x \to (y \to z)) = \mu_{\mathcal{B}}(x) \lor \mu_{\mathcal{B}}(1) = \mu_{\mathcal{B}}(x).$

Aplying Theorem 1 (ii) the second time we obtain

(11)
$$\nu_{\mathcal{B}}(z) \ge \nu_{\mathcal{B}}(y) \wedge \nu_{\mathcal{B}}(y \to z),$$

(12) $\mu_{\mathcal{B}}(z) \le \mu_{\mathcal{B}}(y) \lor \mu_{\mathcal{B}}(y \to z).$

(9), (10), (11) and (12) force $\nu_{\mathcal{B}}(z) \ge \nu_{\mathcal{B}}(x) \land \nu_{\mathcal{B}}(y)$ and $\mu_{\mathcal{B}}(z) \le \mu_{\mathcal{B}}(x) \lor \mu_{\mathcal{B}}(y)$.

(ii) \Rightarrow (i) Let \mathcal{B} be an IF-set of a pseudo-BL-algebra A which satisfies (3). Let $x, y \in A$ be such that $x \leq y$. By Lemma 1 (iv) and (v),

$$x \to (x \to y) = 1,$$

hence applying (5) and (6) we have

$$\nu_{\mathcal{B}}(y) \ge \nu_{\mathcal{B}}(x) \wedge \nu_{\mathcal{B}}(x) = \nu_{\mathcal{B}}(x),$$

$$\mu_{\mathcal{B}}(y) \le \mu_{\mathcal{B}}(x) \lor \mu_{\mathcal{B}}(x) = \mu_{\mathcal{B}}(x),$$

that is, (IF3) holds.

Now we prove that (1) and (2) hold. By Lemma 1 (vi), $(x \to y) \to (x \to y) =$ 1. Thus, applying (5) and (6) we get

$$u_{\mathcal{B}}(y) \ge \nu_{\mathcal{B}}(x \to y) \land \nu_{\mathcal{B}}(x) \text{ and}$$

 $\mu_{\mathcal{B}}(y) \le \mu_{\mathcal{B}}(x \to y) \lor \mu_{\mathcal{B}}(x).$

Hence by Theorem 1, \mathcal{B} is an IF-filter.

 $(iii) \Leftrightarrow (i)$ Analogously.

Proposition 5. Let \mathcal{B} be an IF-set of a pseudo-BL-algebra A. The following are equivalent:

- (i) \mathcal{B} is an IF-filter;
- (ii) for all $x, y, z \in A$

$$(x \odot y) \to z = 1 \Rightarrow \nu_{\mathcal{B}}(z) \ge \nu_{\mathcal{B}}(x) \land \nu_{\mathcal{B}}(y),$$
$$(x \odot y) \to z = 1 \Rightarrow \mu_{\mathcal{B}}(z) \le \mu_{\mathcal{B}}(x) \lor \mu_{\mathcal{B}}(y),$$

(iii) for all $x, y, z \in A$

$$(x \odot y) \rightsquigarrow z = 1 \Rightarrow \nu_{\mathcal{B}}(z) \ge \nu_{\mathcal{B}}(x) \land \nu_{\mathcal{B}}(y), (x \odot y) \rightsquigarrow z = 1 \Rightarrow \mu_{\mathcal{B}}(z) \le \mu_{\mathcal{B}}(x) \lor \mu_{\mathcal{B}}(y).$$

Proof. By Proposition 4 and Lemma 1 (vii).

Let $\mathcal{B}_i = (\nu_{\mathcal{B}_i}, \mu_{\mathcal{B}_i})$ be IF-filters of a pseudo-BL-algebra A for every $i \in I$. We define fuzzy sets $\bigwedge_{i \in I} \nu_{\mathcal{B}_i}$ and $\bigvee_{i \in I} \mu_{\mathcal{B}_i}$ as follows:

$$\left(\bigwedge_{i\in I}\nu_{\mathcal{B}_{i}}\right)(x) = \bigwedge\{\nu_{\mathcal{B}_{i}}(x): i\in I\},\$$
$$\left(\bigvee_{i\in I}\mu_{\mathcal{B}_{i}}\right)(x) = \bigvee\{\mu_{\mathcal{B}_{i}}(x): i\in I\}.$$

For any IF-filters $\mathcal{B}_i = (\nu_{\mathcal{B}_i}, \mu_{\mathcal{B}_i})$ for $i \in I$, of a pseudo-BL-algebra A we define the IF-set $\bigcap_{i \in I} \mathcal{B}_i$ of A by

$$\bigcap_{i\in I} \mathcal{B}_i = \left(\bigwedge_{i\in I} \nu_{\mathcal{B}_i}, \bigvee_{i\in I} \mu_{\mathcal{B}_i}\right).$$

Theorem 2. Let $\mathcal{B}_i = (\nu_{\mathcal{B}_i}, \mu_{\mathcal{B}_i})$ for $i \in I$, be IF-filters of a pseudo-BL-algebra A. Then $\bigcap_{i \in I} \mathcal{B}_i$ is an IF-filter of A.

Proof. Let $\mathcal{B}_i = (\nu_{\mathcal{B}_i}, \mu_{\mathcal{B}_i})$ for $i \in I$, be IF-filters of a pseudo-BL-algebra A and $\mathcal{B} = \bigcap_{i \in I} \mathcal{B}_i = (\nu_{\mathcal{B}}, \mu_{\mathcal{B}})$. We use Proposition 4 to show that \mathcal{B} is an IF-filter of A. Let $x, y, z \in A$ be such that $x \to (y \to z) = 1$. Hence

$$\nu_{\mathcal{B}}(z) = \bigwedge_{i \in I} \nu_{\mathcal{B}_i}(z) \ge \bigwedge_{i \in I} (\nu_{\mathcal{B}_i}(x) \wedge \nu_{\mathcal{B}_i}(y)) = \bigwedge_{i \in I} \nu_{\mathcal{B}_i}(x) \wedge \bigwedge_{i \in I} \nu_{\mathcal{B}_i}(y) = \nu_{\mathcal{B}}(x) \wedge \nu_{\mathcal{B}}(y),$$

$$\mu_{\mathcal{B}}(z) = \bigvee_{i \in I} \mu_{\mathcal{B}_i}(z) \le \bigvee_{i \in I} (\mu_{\mathcal{B}_i}(x) \vee \mu_{\mathcal{B}_i}(y)) = \bigvee_{i \in I} \mu_{\mathcal{B}_i}(x) \vee \bigvee_{i \in I} \mu_{\mathcal{B}_i}(y) = \mu_{\mathcal{B}}(x) \vee \mu_{\mathcal{B}}(y).$$

The proof is closed.

Remark 5. The set of IF-filters of a pseudo-BL-algebra A forms a complete distributive lattice with relation \leq .

Proof. Since [0, 1] is a complete distributive lattice with usual ordering and by Theorem 2, the proof is completed.

Theorem 3. A lattice of IF-filters of a pseudo-BL-algebra A is bounded.

Proof. It is easily seen that 0_{\sim} and 1_{\sim} are IF-filters. Since $0_{\sim} \leq \mathcal{B} \leq 1_{\sim}$ for every IF-filter \mathcal{B} , then a lattice of IF-filters is bounded.

Theorem 4. The lattice of IF-filters of a pseudo-BL-algebras has no atoms.0

Proof. Let \mathcal{B} be an IF-filter of pseudo-BL-algebra A and $\mathcal{B} \neq 0_{\sim}$. Let us define an IF-set \mathcal{D} as follows

$$\mathcal{D} = \left(\frac{1}{2}\nu_{\mathcal{B}}, \frac{1}{2}\mu_{\mathcal{B}}\right).$$

It is obvious that \mathcal{D} is an IF-filter of A and $0_{\sim} < \mathcal{D} < \mathcal{B}$. Hence there are no atoms in a lattice of IF-filters of A.

Let \mathcal{B} be an IF-set of a pseudo-BL-algebra A and $\alpha, \beta \in [0, 1]$ be such that $\alpha + \beta \leq 1$. Then we can define a set

$$A_{\mathcal{B}}^{(\alpha,\beta)} = \{ x \in A : \nu_{\mathcal{B}}(x) \ge \alpha, \mu_{\mathcal{B}}(x) \le \beta \}$$

called an (α, β) –level of \mathcal{B} .

Let us notice that $A_{\mathcal{B}}^{(\alpha,\beta)} = U(\nu_{\mathcal{B}},\alpha) \cap L(\mu_{\mathcal{B}},\beta)$.

Theorem 5. Let \mathcal{B} be an IF-set of a pseudo-BL-algebra A. If \mathcal{B} is an IF-filter of A, then $A_{\mathcal{B}}^{(\alpha,\beta)} = \emptyset$ or $A_{\mathcal{B}}^{(\alpha,\beta)}$ is a filter of A for all $\alpha \in [0, \nu_{\mathcal{B}}(1)], \beta \in [\mu_{\mathcal{B}}(1), 1]$ such that $\alpha + \beta \leq 1$.

Proof. By Theorem 3.10 of [13] and Theorem 3.6 of [11] $\nu_{\mathcal{B}}$ is a fuzzy filter and $\mu_{\mathcal{B}}$ is an anti fuzzy filter iff $U(\nu_{\mathcal{B}}, \alpha)$ and $L(\mu_{\mathcal{B}}, \beta)$ are filters or empty. According to fact that the intersection of filters is a filter and by Remark 4 we have the thesis.

Corollary 1. If \mathcal{B} is an IF-filter of a pseudo-BL-algebra A, then the set

$$A_b = \{ x \in A : \nu_{\mathcal{B}}(x) \ge \nu_{\mathcal{B}}(b), \mu_{\mathcal{B}}(x) \le \mu_{\mathcal{B}}(b) \}$$

is a filter of A for every $b \in A$ such that $\nu_{\mathcal{B}}(b) + \mu_{\mathcal{B}}(b) \leq 1$.

4. PRIME IF-FILTERS

In this section we introduce and study prime IF-filters and their connection with pseudo-BL-chains.

Definition 9. An IF-filter $\mathcal{B} = (\nu_{\mathcal{B}}, \mu_{\mathcal{B}})$ of a pseudo-BL-algebra A is said to be prime IF-filter if $\nu_{\mathcal{B}}$ and $\mu_{\mathcal{B}}$ are non-constant and satisfies following conditions for all $x, y \in A$:

$$\nu_{\mathcal{B}}(x \lor y) = \nu_{\mathcal{B}}(x) \lor \nu_{\mathcal{B}}(y) \text{ and } \mu_{\mathcal{B}}(x \lor y) = \mu_{\mathcal{B}}(x) \land \mu_{\mathcal{B}}(y).$$

Remark 6. An IF-filter $\mathcal{B} = (\nu_{\mathcal{B}}, \mu_{\mathcal{B}})$ of a pseudo-BL-algebra A is said to be prime IF-filter iff $\nu_{\mathcal{B}}$ is a fuzzy prime filter and $\mu_{\mathcal{B}}$ is an anti fuzzy prime filter of A.

Theorem 6. Let $\mathcal{B} = (\nu_{\mathcal{B}}, \mu_{\mathcal{B}})$ be a non-constant IF-filter of a pseudo-BL-algebra A. Then the following are equivalent:

- (i) \mathcal{B} is a prime IF-filter of A;
- (ii) for all $x, y \in A$, if $(\nu_{\mathcal{B}}(x \vee y) = \nu_{\mathcal{B}}(1)$ and $\mu_{\mathcal{B}}(x \vee y) = \mu_{\mathcal{B}}(1))$, then

$$(\nu_{\mathcal{B}}(x) = \nu_{\mathcal{B}}(1) \text{ or } \nu_{\mathcal{B}}(y) = \nu_{\mathcal{B}}(1)) \text{ and}$$
$$(\mu_{\mathcal{B}}(x) = \mu_{\mathcal{B}}(1) \text{ or } \mu_{\mathcal{B}}(y) = \mu_{\mathcal{B}}(1));$$

(iii) for all $x, y \in A$,

$$(\nu_{\mathcal{B}}(x \to y) = \nu_{\mathcal{B}}(1) \text{ or } \nu_{\mathcal{B}}(y \to x) = \nu_{\mathcal{B}}(1)) \text{ and}$$
$$(\mu_{\mathcal{B}}(x \to y) = \mu_{\mathcal{B}}(1) \text{ or } \mu_{\mathcal{B}}(y \to x) = \mu_{\mathcal{B}}(1));$$

(iv) for all $x, y \in A$,

$$(\nu_{\mathcal{B}}(x \rightsquigarrow y) = \nu_{\mathcal{B}}(1) \text{ or } \nu_{\mathcal{B}}(y \rightsquigarrow x) = \nu_{\mathcal{B}}(1)) \text{ and}$$
$$(\mu_{\mathcal{B}}(x \rightsquigarrow y) = \mu_{\mathcal{B}}(1) \text{ or } \mu_{\mathcal{B}}(y \rightsquigarrow x) = \mu_{\mathcal{B}}(1)).$$

Proof. By Theorem 4.1 of [11] and Theorem 4.3 of [13].

Theorem 7. Let A be a pseudo-BL-algebra and \mathcal{B} be an IF-filter of A. Then \mathcal{B} is a prime IF-filter iff $M_{\nu_{\mathcal{B}}}$ and $A_{\mu_{\mathcal{B}}}$ are prime filters of A.

Proof. By Remark 3.

Theorem 8. Let A be a pseudo-BL-algebra, P be a filter of A and $\alpha, \beta \in [0, 1]$ with $\alpha > \beta$. Then P is a prime filter of A if and only if $\mathcal{B}(P) = (\mu_P(\alpha, \beta), \mu_P^C(1-\alpha, 1-\beta))$ define as in Example 1, is a prime IF-filter of A. **Proof.** By Theorem 4.2 of [11] and Theorem 4.6 of [13].

Theorem 9. Let \mathcal{B} be an IF-set of a pseudo-BL-algebra A such that $\nu_{\mathcal{B}}$ and $\mu_{\mathcal{B}}$ are non-constant. Then the following are equivalent:

- (i) \mathcal{B} is a prime IF-filter of A;
- (ii) for every $\alpha \in [0,1]$, if $U(\nu_{\mathcal{B}}, \alpha)$, $L(\mu_{\mathcal{B}}, \alpha) \neq \emptyset$ and $U(\nu_{\mathcal{B}}, \alpha)$, $L(\mu_{\mathcal{B}}, \alpha) \neq A$, then $U(\nu_{\mathcal{B}}, \alpha)$, $L(\mu_{\mathcal{B}}, \alpha)$ are prime filters of A.

Proof. By Theorem 4.4 of [11] and Theorem 4.7 of [13].

Theorem 10. Let A be a non-trivial pseudo-BL-algebra. The following are equivalent:

- (i) A is a pseudo-BL-chain;
- (ii) every IF-filter \mathcal{B} such that $\nu_{\mathcal{B}}$ and $\mu_{\mathcal{B}}$ are non-constant is a prime IF-filter of A;
- (iii) every IF-filter \mathcal{B} such that $\nu_{\mathcal{B}}$ and $\mu_{\mathcal{B}}$ are non-constant, $\nu_{\mathcal{B}}(1) = 1$ and $\mu_{\mathcal{B}}(1) = 0$ is a prime IF-filter of A;
- (iv) the IF-filter $\left(\chi_{\{1\}},\chi_{\{1\}}^{C}\right)$ is a prime IF-filter of A.

Proof. By Theorem 4.6 of [11] and Theorem 4.9 of [13].

5. Homomorphism and IF-filters

Let A, B be pseudo-BL-algebras. Following [3] we define a homomorphism of pseudo-BL-algebras as a mapping $h : A \to B$ such that the following conditions hold for all $x, y \in A$:

- (H1) $h(x \odot y) = h(x) \odot h(y);$
- (H2) $h(x \to y) = h(x) \to h(y);$
- (H3) $h(x \rightsquigarrow y) = h(x) \rightsquigarrow h(y);$
- (H4) h(0) = 0.

Recall that if $h: A \to B$ is a homomorphism of pseudo-BL-algebras, then

- (H5) h(1) = 1;
- (H6) $h(x \wedge y) = h(x) \wedge h(y);$

(H7) $h(x \lor y) = h(x) \lor h(y).$

Definition 10. Let \mathcal{B} be an IF-filer of a pseudo-BL-algebra B and $f: A \to B$ be a homomorphism of pseudo-BL-algebras. The preimage of \mathcal{B} is the IF-set $\mathcal{B}^f = (\nu_{\mathcal{B}}^f, \mu_{\mathcal{B}}^f)$ defined by

$$\nu_{\mathcal{B}}^f(x) = \nu_{\mathcal{B}}(f(x)) \text{ and } \mu_{\mathcal{B}}^f(x) = \mu_{\mathcal{B}}(f(x))$$

for all $x \in A$.

Theorem 11. Let \mathcal{B} be an *IF*-filter of B and $f : A \to B$ be a homomorphism of pseudo-BL-algebras. Then \mathcal{B}^f is an *IF*-filter of A.

Proof. Suppose that $f : A \to B$ is a homomorphism of pseudo-BL-algebras and \mathcal{B} be an IF-filter of B. Let $x, y \in A$. Then

$$\nu_{\mathcal{B}}^{f}(x \odot y) = \nu_{\mathcal{B}}(f(x \odot y)) = \nu_{\mathcal{B}}(f(x) \odot f(y))$$
$$\geq \nu_{\mathcal{B}}(f(x)) \wedge \nu_{\mathcal{B}}(f(y)) = \nu_{\mathcal{B}}^{f}(x) \wedge \nu_{\mathcal{B}}^{f}(y)$$

and

$$\mu_{\mathcal{B}}^{f}(x \odot y) = \mu_{\mathcal{B}}(f(x \odot y)) = \mu_{\mathcal{B}}(f(x) \odot f(y))$$
$$\leq \mu_{\mathcal{B}}(f(x)) \lor \mu_{\mathcal{B}}(f(y)) = \mu_{\mathcal{B}}^{f}(x) \lor \mu_{\mathcal{B}}^{f}(y).$$

Hence (IF1) and (IF2) hold.

Now let $x, y \in A$ be such that $x \leq y$. Therefore,

$$\nu_{\mathcal{B}}^{f}(x) = \nu_{\mathcal{B}}^{f}(x \wedge y) = \nu_{\mathcal{B}}(f(x \wedge y))$$
$$= \nu_{\mathcal{B}}(f(x) \wedge f(y)) \le \nu_{\mathcal{B}}(f(y)) = \nu_{\mathcal{B}}^{f}(y)$$

and

$$\mu_{\mathcal{B}}^{f}(x) = \mu_{\mathcal{B}}^{f}(x \wedge y) = \mu_{\mathcal{B}}(f(x \wedge y))$$
$$= \mu_{\mathcal{B}}(f(x) \wedge f(y)) \ge \mu_{\mathcal{B}}(f(y)) = \mu_{\mathcal{B}}^{f}(y).$$

Thus, (IF3) holds.

Concluding, \mathcal{B}^f is an IF-filter of A.

Theorem 12. Let \mathcal{B} be an IF-set of B, \mathcal{B}^f be an IF-filter of A, where $f : A \to B$ is an epimorphism of pseudo-BL-algebras. Then \mathcal{B} is an IF-filter of A.

Proof. Let $f : A \to B$ be an epimorphism of pseudo-BL-algebras. Then, for any $x, y \in B$, there exist $a, b \in A$ such that x = f(a) and y = f(b). Therefore,

$$\nu_{\mathcal{B}}(x \odot y) = \nu_{\mathcal{B}}(f(a) \odot f(b)) = \nu_{\mathcal{B}}(f(a \odot b))$$
$$= \nu_{\mathcal{B}}^{f}(a \odot b) \ge \nu_{\mathcal{B}}^{f}(a) \wedge \nu_{\mathcal{B}}^{f}(b)$$
$$= \nu_{\mathcal{B}}(f(a)) \wedge \nu_{\mathcal{B}}(f(b)) = \nu_{\mathcal{B}}(x) \wedge \nu_{\mathcal{B}}(y)$$

and

$$\mu_{\mathcal{B}}(x \odot y) = \mu_{\mathcal{B}}(f(a) \odot f(b)) = \mu_{\mathcal{B}}(f(a \odot b))$$
$$= \mu_{\mathcal{B}}^{f}(a \odot b) \le \mu_{\mathcal{B}}^{f}(a) \lor \mu_{\mathcal{B}}^{f}(b)$$
$$= \mu_{\mathcal{B}}(f(a)) \lor \mu_{\mathcal{B}}(f(b)) = \mu_{\mathcal{B}}(x) \lor \mu_{\mathcal{B}}(y).$$

Hence (IF1) and (IF2) hold.

Now let $x, y \in B$ be such that $x \leq y$. Then, there exist $a, b \in A$ such that x = f(a) and y = f(b). Therefore,

$$\nu_{\mathcal{B}}(x) = \nu_{\mathcal{B}}(x \wedge y) = \nu_{\mathcal{B}}(f(a) \wedge f(b)) = \nu_{\mathcal{B}}(f(a \wedge b))$$
$$= \nu_{\mathcal{B}}^{f}(a \wedge b) \le \nu_{\mathcal{B}}^{f}(b) = \nu_{\mathcal{B}}(f(b)) = \nu_{\mathcal{B}}(y)$$

and

$$\mu_{\mathcal{B}}(x) = \mu_{\mathcal{B}}(x \wedge y) = \mu_{\mathcal{B}}(f(a) \wedge f(b)) = \mu_{\mathcal{B}}(f(a \wedge b))$$
$$= \mu_{\mathcal{B}}^{f}(a \wedge b) \ge \mu_{\mathcal{B}}^{f}(b) = \mu_{\mathcal{B}}(f(b)) = \mu_{\mathcal{B}}(y).$$

Thus, (IF3) holds.

Concluding, \mathcal{B} is an IF-filter of B.

Now let us denote the set of all filters of pseudo-BL-algebra A by Fil(A) and the set of all IF-filters of A by IFil(A). Let $\alpha \in (0,1)$. We define maps $f_{\alpha} : IFil(A) \to Fil(A) \cup \{\emptyset\}$ and $g_{\alpha} : IFil(A) \to Fil(A) \cup \{\emptyset\}$ by

$$f_{\alpha}(\mathcal{B}) = U(\nu_{\mathcal{B}}, \alpha),$$

$$g_{\alpha}(\mathcal{B}) = L(\mu_{\mathcal{B}}, \alpha)$$

for all $\mathcal{B} = (\nu_{\mathcal{B}}, \mu_{\mathcal{B}}) \in IFil(A)$.

Theorem 13. For any $\alpha \in (0,1)$, the maps f_{α} and g_{α} are surjective from IFil(A) onto $Fil(A) \cup \{\emptyset\}$.

Proof. It is obvious, that

 $f_{\alpha}(0_{\sim}) = U(0,\alpha) = \emptyset = L(1,\alpha) = g_{\alpha}(0_{\sim}).$

Now let $\emptyset \neq F \in Fil(A)$. Then (χ_F, χ_F^C) is an IF-filter of A. Hence,

$$f_{\alpha}\left(\left(\chi_{F},\chi_{F}^{C}\right)\right) = U(\chi_{F},\alpha) = F = L(\chi_{F}^{C},\alpha) = g_{\alpha}\left(\left(\chi_{F},\chi_{F}^{C}\right)\right).$$

Therefore, f_{α} and g_{α} are surjective.

6. Direct product of IF-filters

Let us define a direct product $\prod_{i \in I} A_i$ of pseudo-BL-algebras as usually.

Definition 11. Let A be a pseudo-BL-algebra. Then we define an IF-relation on A as a mapping $\mathcal{R} = (\nu'_{\mathcal{R}}, \mu'_{\mathcal{R}}) : A \times A \to [0,1] \times [0,1]$ such that $\nu'_{\mathcal{R}}(x,y) + \mu'_{\mathcal{R}}(x,y) \leq 1$ for all $x, y \in A$.

Now define a direct product of IF-sets of pseudo-BL-algebra A.

Definition 12. Let $\mathcal{B} = (\nu_{\mathcal{B}}, \mu_{\mathcal{B}})$ and $\mathcal{G} = (\nu_{\mathcal{G}}, \mu_{\mathcal{G}})$ be IF-sets of A. We define a direct product $\mathcal{B} \times \mathcal{G}$ by

$$\mathcal{B} \times \mathcal{G} = (\nu_{\mathcal{B}}, \mu_{\mathcal{B}}) \times (\nu_{\mathcal{G}}, \mu_{\mathcal{G}}) = (\nu_{\mathcal{B}} \times \nu_{\mathcal{G}}, \mu_{\mathcal{B}} \times \mu_{\mathcal{G}}),$$

where $(\nu_{\mathcal{B}} \times \nu_{\mathcal{G}})(x, y) = \nu_{\mathcal{B}}(x) \wedge \nu_{\mathcal{G}}(y)$ and $(\mu_{\mathcal{B}} \times \mu_{\mathcal{G}})(x, y) = \mu_{\mathcal{B}}(x) \vee \mu_{\mathcal{G}}(y)$ for all $x, y \in A$.

Proposition 6. Let $\mathcal{B} = (\nu_{\mathcal{B}}, \mu_{\mathcal{B}})$ and $\mathcal{G} = (\nu_{\mathcal{G}}, \mu_{\mathcal{G}})$ be IF-sets of a pseudo-BLalgebra A, then $\mathcal{B} \times \mathcal{G}$ is an IF-set of $A \times A$.

Proof. Let \mathcal{B}, \mathcal{G} be IF-sets of A. Then for every $x \in A$ we have $\nu_{\mathcal{B}}(x) + \mu_{\mathcal{B}}(x) \leq 1$ and $\nu_{\mathcal{G}}(x) + \mu_{\mathcal{G}}(x) \leq 1$. Suppose that $\nu_{\mathcal{B}}(x) \leq \nu_{\mathcal{G}}(y)$ for some $x, y \in A$. Then $(\nu_{\mathcal{B}} \times \nu_{\mathcal{G}})(x, y) = \nu_{\mathcal{B}}(x) \wedge \nu_{\mathcal{G}}(y) = \nu_{\mathcal{B}}(x)$. Let us consider two cases:

Case 1. $\mu_{\mathcal{B}}(x) \leq \mu_{\mathcal{G}}(y)$ Hence $(\mu_{\mathcal{B}} \times \mu_{\mathcal{G}})(x, y) = \mu_{\mathcal{B}}(x) \vee \mu_{\mathcal{G}}(y) = \mu_{\mathcal{G}}(y)$ and then $(\nu_{\mathcal{B}} \times \nu_{\mathcal{G}})(x, y) + (\mu_{\mathcal{B}} \times \mu_{\mathcal{G}})(x, y) = \nu_{\mathcal{B}}(x) + \mu_{\mathcal{G}}(y) \leq \nu_{\mathcal{G}}(y) + \mu_{\mathcal{G}}(y) \leq 1.$

Case 2. $\mu_{\mathcal{B}}(x) > \mu_{\mathcal{G}}(y)$ Therefore $(\mu_{\mathcal{B}} \times \mu_{\mathcal{G}})(x, y) = \mu_{\mathcal{B}}(x) \lor \mu_{\mathcal{G}}(y) = \mu_{\mathcal{B}}(x)$ and then $(\nu_{\mathcal{B}} \times \nu_{\mathcal{G}})(x, y) + (\mu_{\mathcal{B}} \times \mu_{\mathcal{G}})(x, y) = \nu_{\mathcal{B}}(x) + \mu_{\mathcal{B}}(x) \le 1$. Hence $\mathcal{B} \times \mathcal{G}$ is an IF-set of $A \times A$.

Analogously when $\nu_{\mathcal{B}}(x) > \nu_{\mathcal{G}}(y)$.

190

Now we give a trivial Proposition without a proof:

Proposition 7. Let $\mathcal{B} = (\nu_{\mathcal{B}}, \mu_{\mathcal{B}})$ and $\mathcal{G} = (\nu_{\mathcal{G}}, \mu_{\mathcal{G}})$ be IF-sets of a pseudo-BLalgebra A, then

- (i) $\mathcal{B} \times \mathcal{G}$ is an IF-relation of A;
- (ii) $U(\nu_{\mathcal{B}} \times \nu_{\mathcal{G}}; \alpha) = U(\nu_{\mathcal{B}}; \alpha) \times U(\nu_{\mathcal{G}}; \alpha)$ and $L(\mu_{\mathcal{B}} \times \mu_{\mathcal{G}}; \alpha) = L(\mu_{\mathcal{B}}; \alpha) \times L(\mu_{\mathcal{G}}; \alpha)$ for all $\alpha \in [0, 1]$.

Theorem 14. Let $\mathcal{B} = (\nu_{\mathcal{B}}, \mu_{\mathcal{B}})$ and $\mathcal{G} = (\nu_{\mathcal{G}}, \mu_{\mathcal{G}})$ be IF-filters of a pseudo-BLalgebra A. Then $\mathcal{B} \times \mathcal{G}$ is an IF-filter of $A \times A$.

Proof. Let $\mathcal{B} = (\nu_{\mathcal{B}}, \mu_{\mathcal{B}})$ and $\mathcal{G} = (\nu_{\mathcal{G}}, \mu_{\mathcal{G}})$ be IF-filters of a pseudo-BL-algebra A. Suppose that $x, y \in A$. Then by (IF1) and (IF2), $\nu_{\mathcal{B}}(x \odot y) \ge \nu_{\mathcal{B}}(x) \land \nu_{\mathcal{B}}(y)$, $\nu_{\mathcal{G}}(x \odot y) \ge \nu_{\mathcal{G}}(x) \land \nu_{\mathcal{G}}(y)$ and $\mu_{\mathcal{B}}(x \odot y) \le \mu_{\mathcal{B}}(x) \lor \mu_{\mathcal{B}}(y)$, $\mu_{\mathcal{G}}(x \odot y) \le \mu_{\mathcal{G}}(x) \lor \mu_{\mathcal{G}}(y)$. Let $(x_1, x_2), (y_1, y_2) \in A \times A$. Then,

$$\begin{aligned} \left(\nu_{\mathcal{B}} \times \nu_{\mathcal{G}}\right) \left(\left(x_{1}, x_{2}\right) \odot \left(y_{1}, y_{2}\right)\right) &= \left(\nu_{\mathcal{B}} \times \nu_{\mathcal{G}}\right) \left(x_{1} \odot y_{1}, x_{2} \odot y_{2}\right) \\ &= \nu_{\mathcal{B}} \left(x_{1} \odot y_{1}\right) \wedge \nu_{\mathcal{G}} \left(x_{2} \odot y_{2}\right) \\ &\geq \nu_{\mathcal{B}}(x_{1}) \wedge \nu_{\mathcal{B}}(y_{1}) \wedge \nu_{\mathcal{G}}(x_{2}) \wedge \nu_{\mathcal{G}}(y_{2}) \\ &= \left(\nu_{\mathcal{B}}(x_{1}) \wedge \nu_{\mathcal{G}}(x_{2})\right) \wedge \left(\nu_{\mathcal{B}}(y_{1}) \wedge \nu_{\mathcal{G}}(y_{2})\right) \\ &= \left(\nu_{\mathcal{B}} \times \nu_{\mathcal{G}}\right) \left(x_{1}, x_{2}\right) \wedge \left(\nu_{\mathcal{B}} \times \nu_{\mathcal{G}}\right) \left(y_{1}, y_{2}\right). \end{aligned}$$

Similarly, we can prove that $(\mu_{\mathcal{B}} \times \mu_{\mathcal{G}}) ((x_1, x_2) \odot (y_1, y_2)) \leq (\mu_{\mathcal{B}} \times \mu_{\mathcal{G}}) (x_1, x_2) \vee (\mu_{\mathcal{B}} \times \mu_{\mathcal{G}}) (y_1, y_2)$.

It is proved that (IF1) and (IF2) hold.

Now let $(x_1, x_2), (y_1, y_2) \in A \times A$ be such that $(x_1, x_2) \leq (y_1, y_2)$. Then

$$(\nu_{\mathcal{B}} \times \nu_{\mathcal{G}}) (x_1, x_2) = (\nu_{\mathcal{B}} \times \nu_{\mathcal{G}}) ((x_1, x_2) \wedge (y_1, y_2)) = (\nu_{\mathcal{B}} \times \nu_{\mathcal{G}}) (x_1 \wedge y_1, x_2 \wedge y_2) = \nu_{\mathcal{B}} (x_1 \wedge y_1) \wedge \nu_{\mathcal{G}} (x_2 \wedge y_2) \leq \nu_{\mathcal{B}} (y_1) \wedge \nu_{\mathcal{G}} (y_2) = (\nu_{\mathcal{B}} \times \nu_{\mathcal{G}}) (y_1, y_2).$$

and similarly $(\mu_{\mathcal{B}} \times \mu_{\mathcal{G}})(x_1, x_2) \ge (\mu_{\mathcal{B}} \times \mu_{\mathcal{G}})(y_1, y_2).$

The proof is completed.

Theorem 15. Let $\mathcal{B} = (\nu_{\mathcal{B}}, \mu_{\mathcal{B}})$ be IF-set of a pseudo-BL-algebra A. Then \mathcal{B} is an IF-filter of A if and only if $\mathcal{B} \times \mathcal{B}$ is an IF-filter of $A \times A$.

Proof. \Rightarrow : By Theorem 14.

 \Leftarrow : Let $\mathcal{B} \times \mathcal{B}$ be an IF-filter of $A \times A$. Let $(x_1, x_2), (y_1, y_2) \in A \times A$. Hence

$$\nu_{\mathcal{B}}(x_1 \odot y_1) \wedge \nu_{\mathcal{B}}(x_2 \odot y_2) = (\nu_{\mathcal{B}} \times \nu_{\mathcal{B}}) (x_1 \odot y_1, x_2 \odot y_2) = (\nu_{\mathcal{B}} \times \nu_{\mathcal{B}}) ((x_1, x_2) \odot (y_1, y_2)) \geq (\nu_{\mathcal{B}} \times \nu_{\mathcal{B}}) (x_1, x_2) \wedge (\nu_{\mathcal{B}} \times \nu_{\mathcal{B}}) (y_1, y_2) = \nu_{\mathcal{B}}(x_1) \wedge \nu_{\mathcal{B}}(x_2) \wedge \nu_{\mathcal{B}}(y_1) \wedge \nu_{\mathcal{B}}(y_2).$$

Putting $x_1 = x_2$ and $y_1 = y_2$ we have

$$\nu_{\mathcal{B}}(x_1 \odot y_1) \ge \nu_{\mathcal{B}}(x_1) \land \nu_{\mathcal{B}}(x_1) \land \nu_{\mathcal{B}}(y_1) \land \nu_{\mathcal{B}}(y_1) = \nu_{\mathcal{B}}(x_1) \land \nu_{\mathcal{B}}(y_1).$$

Similarly, $\mu_{\mathcal{B}}(x_1 \odot y_1) \le \mu_{\mathcal{B}}(x_1) \lor \mu_{\mathcal{B}}(y_1)$. Let $x, y \in A$ be such that $x \le y$. Then by (IF3),

$$\nu_{\mathcal{B}}(x) = (\nu_{\mathcal{B}} \times \nu_{\mathcal{B}})(x, x) \le (\nu_{\mathcal{B}} \times \nu_{\mathcal{B}})(y, y) = \nu_{\mathcal{B}}(y).$$

Analogously, $\mu_{\mathcal{B}}(x) \ge \mu_{\mathcal{B}}(y)$.

Hence $\mathcal{B} = (\nu_{\mathcal{B}}, \mu_{\mathcal{B}})$ is an IF-filter of A.

Acknowledgements

The author thanks the referee for his/her remarks which were incorporated into this revised version.

References

- K. Atanassov, *Intuitionistic fuzzy sets*, Fuzzy Sets and Systems, **20** (1986), 87–96. doi:10.1016/s0165-0114(86)80034-3
- [2] C.C. Chang, Algebraic analysis of many valued logics, Trans. Amer. Math. Soc. 88 (1958) 467–490. doi:10.1090/S0002-9947-1958-0094302-9
- [3] A. Di Nola, G. Georgescu and A. Iorgulescu, *Pseudo-BL algebras* I, Multiple-Valued Logic 8 (2002) 673–714.
- [4] A. Di Nola, G. Georgescu and A. Iorgulescu, *Pseudo-BL algebras* II, Multiple-Valued Logic 8 (2002) 717–750.
- [5] G. Georgescu and A. Iorgulescu, Pseudo-MV algebras: a noncommutative extension of MV-algebras, The Proceedings of the Fourth International Symposium on Economic Informatics (Bucharest, Romania, May, 1999), 961–968.
- [6] G. Georgescu and A. Iorgulescu, Pseudo-BL algebras: a noncommutative extension of BL-algebras, Abstracts of the Fifth International Conference FSTA 2000 (Slovakia, 2000), 90-92.
- [7] G. Georgescu and L.L. Leuştean, Some classes of pseudo-BL algebras, J. Austral. Math. Soc. 73 (2002) 127–153. doi:10.1017/s144678870000851x

- [8] P. Hájek, Metamathematics of fuzzy logic, Inst. of Comp. Science, Academy of Science of Czech Rep. Technical report 682 (1996).
- P. Hájek, Metamathematics of Fuzzy Logic (Kluwer Acad. Publ., Dordrecht, 1998). doi:10.1007/978-94-011-5300-3
- [10] J. Rachůnek, A non-commutative generalization of MV algebras, Czechoslovak Math. J. 52 (2002) 255–273.
- [11] J. Rachůnek and D. Šalounová, Fuzzy filters and fuzzy prime filters of bounded *Rl-monoids and pseudo-BLalgebras*, Information Sciences **178** (2008) 3474–3481. doi:10.1016/j.ins.2008.05.005
- [12] G. Takeuti and S. Titants, Intuitionistic fuzzy logic and Intuitionistic fuzzy sets theory, Journal of Symbolic Logic 49 (1984) 851–866.
- [13] M. Wojciechowska-Rysiawa, Anti fuzzy filters of pseudo-BL algebras, Comment. Math. 51 (2011) 155–167.
- [14] L.A. Zadeh, Fuzzy sets, Inform. Control 8 (1965) 338–353. doi:10.1016/S0019-9958(65)90241-X

Received 13 April 2015 Revised 21 May 2015