IF-FILTERS OF PSEUDO-BL-ALGEBRAS

MAGDALENA WOJCIECHOWSKA-RYSIAWA
Institute of Mathematics and Physics
University of Natural Sciences and Humanities
3 Maja 54, 08-110 Siedlce, Poland
e-mail: magdawojciechowska6@wp.pl

Abstract
Characterizations of IF-filters of a pseudo-BL-algebra are established. Some related properties are investigated. The notation of prime IF-filters and a characterization of a pseudo-BL-chain are given. Homomorphisms of IF-filters and direct product of IF-filters are studied.

Keywords: pseudo-BL-algebra, filter, IF-filter, prime IF-filters, pseudo-BL-chain, homomorphism, direct product.

2010 Mathematics Subject Classification: 03G25, 06F35.

1. Introduction
In 1958, Chang [2] gave a notation and a characterization of MV-algebras. In 1998, Hájek [8] introduced BL-algebras, which contain the class of MV-algebras. Georgescu and Iorgulescu [5] and independently Rachůnek [10] introduced pseudo MV-algebras as a noncommutative extension of MV-algebras. Finally, in 2000 there were given a notion of pseudo-BL-algebras, which are a noncommutative extension of BL-algebras. Some important properties of pseudo-BL-algebras were studied in [3, 4] and [7].

In this paper, we introduce a notation of intuitionistic fuzzy filters of pseudo-BL-algebras and study their properties. We introduce prime intuitionistic fuzzy filters and using them we give a characterization of a pseudo-BL-chain. We investigate a homomorphism of intuitionistic fuzzy filters. Finally, we study a direct product of intuitionistic fuzzy filters. We will write shortly IF-filters instead of intuitionistic fuzzy filters.
2. Preliminaries

Definition 1. In [6], there were introduced a pseudo-BL-algebra A as an algebra $(A, \vee, \wedge, \odot, \rightarrow, \rightsquigarrow, 0, 1)$ of type $(2, 2, 2, 2, 2, 0, 0)$ satisfying the following axioms for all $x, y, z \in A$:

(C1) $(A, \vee, \wedge, 0, 1)$ is a bounded lattice;
(C2) $(A, \odot, 1)$ is a monoid;
(C3) $x \odot y \leq z \iff x \leq y \rightarrow z \iff y \leq x \rightsquigarrow z$;
(C4) $x \wedge y = (x \rightarrow y) \odot x = x \odot (x \rightsquigarrow y)$;
(C5) $(x \rightarrow y) \vee (y \rightarrow x) = (x \rightsquigarrow y) \vee (y \rightsquigarrow x) = 1$.

Lemma 1 ([7]). Let $(A, \vee, \wedge, \odot, \rightarrow, \rightsquigarrow, 0, 1)$ be a pseudo-BL-algebra. Then for all $x, y, z \in A$:

(i) $y \leq x \rightarrow y$ and $y \leq x \rightsquigarrow y$;
(ii) $x \odot y \leq x \wedge y$;
(iii) $x \odot y \leq x$ and $x \odot y \leq y$;
(iv) $x \rightarrow 1 = x \rightsquigarrow 1 = 1$;
(v) $x \leq y \iff x \rightarrow y = x \rightsquigarrow y = 1$;
(vi) $x \rightarrow x = x \rightsquigarrow x = 1$;
(vii) $x \rightarrow (y \rightarrow z) = (x \odot y) \rightarrow z$ and $x \rightsquigarrow (y \rightsquigarrow z) = (y \odot x) \rightsquigarrow z$.

We will write shortly A instead of $(A, \vee, \wedge, \odot, \rightarrow, \rightsquigarrow, 0, 1)$.

Definition 2. A nonempty subset F of a pseudo-BL-algebra A is called a filter if it satisfies the following two conditions:

(F1) if $x, y \in F$, then $x \odot y \in F$;
(F2) if $x \in F$ and $x \leq y$, then $y \in F$.

A filter F of a pseudo-BL-algebra A is called proper if $F \neq A$. The proper filter F is prime if for all $x, y \in A$

$$x \vee y \in F \; \implies \; (x \in F \; \text{or} \; y \in F).$$

Now, we give definitions of a fuzzy filter and an anti fuzzy filter of a pseudo-BL-algebra A and their some properties.
Recall that a fuzzy set of A is a function $\nu : A \to [0, 1]$. For any fuzzy set ν and real number $\alpha \in [0, 1]$ there are defined two sets:

$$U(\nu, \alpha) = \{ x \in A : \nu(x) \geq \alpha \}$$

$$L(\nu, \alpha) = \{ x \in A : \nu(x) \leq \alpha \}$$

which are called an upper and a lower α-level set of ν.

Definition 3. Let ν be a fuzzy set of pseudo-BL-algebra A. A complement of ν is the fuzzy set ν^C defined as follows

$$\nu^C(x) = 1 - \nu(x)$$

for any $x \in A$.

A fuzzy set μ is called:

1. a fuzzy filter, if for all $x, y \in A$
 - (ff1) $\mu(x \odot y) \geq \mu(x) \wedge \mu(y)$;
 - (ff2) $x \leq y \Rightarrow \mu(x) \leq \mu(y)$.

2. an anti fuzzy filter, if for all $x, y \in A$
 - (af1) $\mu(x \odot y) \leq \mu(x) \vee \mu(y)$;
 - (af2) $x \leq y \Rightarrow \mu(y) \leq \mu(x)$.

Remark 1. Let μ and ν be a fuzzy sets of a pseudo-BL-algebra A. Then:

(i) μ is a fuzzy filter of A iff μ^C is an anti fuzzy filter of A;

(ii) ν is an anti fuzzy filter of A iff ν^C is a fuzzy filter of A.

Definition 4 ([11]). Let F be a filter of a pseudo-BL-algebra A and $\alpha, \beta \in [0, 1]$ such that $\alpha > \beta$. Let us define a fuzzy filter $\mu_F(\alpha, \beta)$ as follows

$$\mu_F(\alpha, \beta)(x) = \begin{cases} \alpha & \text{if } x \in F, \\ \beta & \text{otherwise.} \end{cases}$$

Remark 2 ([13]). A fuzzy set $\mu_F^C(\alpha, \beta)$ is an anti fuzzy filter of A.

We denote by χ_F the characteristic function of F and by χ_F^C the complement of the characteristic function of F.

Definition 5. Let A be a pseudo-BL-algebra and ν be a fuzzy filter of A. Then ν is called a fuzzy prime filter if

$$\nu(x \vee y) = \nu(x) \vee \nu(y)$$

for all $x, y \in A$.
Definition 6. Let A be a pseudo-BL-algebra and μ be an anti fuzzy filter of A. Then μ is called an anti fuzzy prime filter if

$$\mu(x \vee y) = \mu(x) \land \mu(y)$$

for all $x, y \in A$.

For a fuzzy filter ν of pseudo-BL-algebra A we define a set

$$M_{\nu} = \{x \in A : \nu(x) = \nu(1)\}$$

and similarly, for an anti fuzzy filter μ we define a set

$$A_{\mu} = \{x \in A : \mu(x) = \mu(1)\}.$$

Remark 3. It is proved in [11] and [13] that a fuzzy filter ν of A is a fuzzy prime filter (an anti fuzzy filter μ of A is an anti fuzzy prime filter) iff $M_{\nu}(A_{\mu})$ is a prime filter of A.

3. IF-filters

Definition 7. A mapping $B : A \to [0, 1] \times [0, 1]$ such that $B(x) = (\nu_B(x), \mu_B(x))$, in which $\nu_B(x) + \mu_B(x) \leq 1$ for any $x \in A$, is called an IF-set of A.

In particular, we use 0_\sim and 1_\sim to denote the IF-empty set and the IF-whole set in a set A such that $0_\sim(x) = (0; 1)$ and $1_\sim(x) = (1; 0)$ for each $x \in A$, respectively.

For IF-sets $B = (\nu_B, \mu_B)$ and $C = (\nu_C, \mu_C)$ we define a relation \leq as follows:

$$B \leq C \iff (\nu_B(x) < \nu_C(x) \text{ or } (\nu_B(x) = \nu_C(x) \text{ and } \mu_B(x) < \mu_C(x))) \text{ for any } x \in A.$$

Now, we give the definition of an IF-filter of a pseudo-BL-algebra. From this place an IF-set $B = (\nu_B, \mu_B)$ will be denoted by B.

Definition 8. An IF-set B of pseudo-BL-algebra A is an IF-filter of A if it satisfies the following conditions for all $x, y \in A$:

1. (IF1) $\nu_B(x \circ y) \geq \nu_B(x) \land \nu_B(y)$;
2. (IF2) $\mu_B(x \circ y) \leq \mu_B(x) \lor \mu_B(y)$;
3. (IF3) $x \leq y \Rightarrow (\nu_B(x) \leq \nu_B(y) \text{ and } \mu_B(x) \geq \mu_B(y)).$

Remark 4. An IF-set B of a pseudo-BL-algebra A is an IF-filter of A iff ν_B is a fuzzy filter and μ_B is an anti fuzzy filter of A.

It is easy to see, that (IF3) implies

(IF4) \(\nu_B(x) \leq \nu_B(1) \) and \(\mu_B(x) \geq \mu_B(1) \) for every \(x \in A \);

(IF4′) \(\nu_B(0) \leq \nu_B(x) \) and \(\mu_B(0) \geq \mu_B(x) \) for every \(x \in A \).

Proposition 1. Let \(B \) be an IF-set of a pseudo-BL-algebra \(A \). Then \(B \) is an IF-filter of \(A \) iff \(B_C = (\nu_B, \mu_B^C) \) and \(cB = (\mu_B^C, \mu_B) \) are IF-filters of \(A \).

Proof. \(\Rightarrow \): Let \(B \) be an IF-set of a pseudo-BL-algebra \(A \). By Remark 4 \(\nu_B \) is a fuzzy filter and \(\mu_B \) is an anti fuzzy filter of \(A \). Then \(\nu_B^C \) is an anti fuzzy filter and \(\mu_B^C \) is a fuzzy filter of \(A \). Using Remark 4 once again we obtain that \(B_C = (\nu_B, \nu_B^C) \) and \(cB = (\mu_B^C, \mu_B) \) are IF-filters of \(A \).

\(\Leftarrow \): By Remark 4.

Example 1. Let \(F \) be a filter of a pseudo-BL-algebra \(A \) and \(B(F) = (\nu_{B(F)}, \mu_{B(F)}) \) be an IF-set of \(A \) defined as follows

\[
\nu_{B(F)}(x) := \begin{cases}
\alpha & \text{if } x \in F; \\
\beta & \text{otherwise}
\end{cases}
\]

and \(\mu_{B(F)}(x) := \begin{cases}
\alpha_1 & \text{if } x \in F; \\
\beta_1 & \text{otherwise}
\end{cases} \)

where \(\alpha, \alpha_1, \beta, \beta_1 \in [0, 1], \alpha > \beta, \alpha_1 < \beta_1 \) and \(\alpha + \alpha_1, \beta + \beta_1 \leq 1 \).

By Definition 4 and Remark 2, \(\nu_{B(F)} \) is a fuzzy filter of \(A \) and \(\mu_{B(F)} \) is an anti fuzzy filter of \(A \). Hence, by Remark 4, \(B(F) \) is an IF-filter of \(A \).

Proposition 2. Let \(B = (\nu_B, \mu_B) \) be an IF-filter of a pseudo-BL-algebra \(A \), then for all \(x, y \in A \):

(i) \(\nu_B(x \lor y) \geq \nu_B(x) \land \nu_B(y) \);

(ii) \(\nu_B(x \land y) = \nu_B(x) \land \nu_B(y) \);

(iii) \(\nu_B(x \circ y) = \nu_B(x) \land \nu_B(y) \);

(iv) \(\mu_B(x \land y) = \mu_B(x) \lor \mu_B(y) \);

(v) \(\mu_B(x \circ y) = \mu_B(x) \lor \mu_B(y) \);

(vi) \(\mu_B(x \lor y) \leq \mu_B(x) \lor \mu_B(y) \).

Proof. By Lemma 1 (ii) \(x \circ y \leq x \land y \leq x \lor y \). Then, by definition of an IF-filter, \(\nu_B(x) \land \nu_B(y) \leq \nu_B(x \circ y) \leq \nu_B(x \land y) \leq \nu_B(x \lor y) \) and \(\mu_B(x) \lor \mu_B(y) \geq \mu_B(x \circ y) \geq \mu_B(x \land y) \geq \mu_B(x \lor y) \). (i) and (vi) are proved. Applying Lemma 1 (iii), we have \(\nu_B(x) \land \nu_B(y) \leq \nu_B(x \circ y) \leq \nu_B(x \land y) \leq \nu_B(x \lor y) \) and \(\mu_B(x) \lor \mu_B(y) \geq \mu_B(x \circ y) \geq \mu_B(x \land y) \geq \mu_B(x \lor y) \). The proofs for (ii), (iii), (iv) and (v) are finished.
Proposition 3. An IF-set B of a pseudo-BL-algebra A is an IF-filter of A if and only if it satisfies (IF1), (IF2) and

(IF5) $\nu_B(x \lor y) \geq \nu_B(x)$ and $\mu_B(x \lor y) \leq \mu_B(x)$ for all $x, y \in A$.

Proof. \Rightarrow: Let us suppose that B is an IF-filter of A. Then, by (IF3), $\nu_B(x \lor y) \geq \nu_B(x)$ and $\mu_B(x \lor y) \leq \mu_B(x)$ for all $x, y \in A$.

\Leftarrow: Conversely, let B satisfies (IF1), (IF2) and (IF5). We need to show that B satisfies (IF3). Let $x, y \in A$ be such that $x \leq y$. By (IF5) we have $\nu_B(y) = \nu_B(x \lor y) \geq \nu_B(x)$ and $\mu_B(y) = \mu_B(x \lor y) \leq \mu_B(x)$. Hence (IF3) is satisfied. \blacksquare

Theorem 1. Let B be an IF-set of a pseudo-BL-algebra A. The following are equivalent:

(i) B is an IF-filter;

(ii) B satisfies (IF3) and for all $x, y \in A$

(1) $\nu_B(y) \geq \nu_B(x) \land \nu_B(x \rightarrow y)$,

(2) $\mu_B(y) \leq \mu_B(x) \lor \mu_B(x \rightarrow y)$.

(iii) B satisfies (IF3) and for all $x, y \in A$

(3) $\nu_B(y) \geq \nu_B(x) \land \nu_B(x \twoheadrightarrow y)$,

(4) $\mu_B(y) \leq \mu_B(x) \lor \mu_B(x \twoheadrightarrow y)$.

Proof. Using Remark 4 of this paper, Proposition 3.3 and Corollary 3.4 of [13] and Theorem 3.3 of [11] we have the thesis. \blacksquare

Proposition 4. Let B be an IF-set of a pseudo-BL-algebra A. The following are equivalent:

(i) B is an IF-filter;

(ii) for all $x, y, z \in A$

(5) $x \rightarrow (y \rightarrow z) = 1 \Rightarrow \nu_B(z) \geq \nu_B(x) \land \nu_B(y)$,

(6) $x \rightarrow (y \rightarrow z) = 1 \Rightarrow \mu_B(z) \leq \mu_B(x) \lor \mu_B(y)$.

(iii) for all $x, y, z \in A$

(7) $x \twoheadrightarrow (y \twoheadrightarrow z) = 1 \Rightarrow \nu_B(z) \geq \nu_B(x) \land \nu_B(y)$,

(8) $x \twoheadrightarrow (y \twoheadrightarrow z) = 1 \Rightarrow \mu_B(z) \leq \mu_B(x) \lor \mu_B(y)$.
Proof. (i)⇒(ii) Suppose that B is an IF-filter of a pseudo-BL-algebra A. Let $x, y, z \in A$ be such that $x \rightarrow (y \rightarrow z) = 1$. By Theorem 1 (ii)
\[(9) \quad \nu_B(y \rightarrow z) \geq \nu_B(x) \land \nu_B(x \rightarrow (y \rightarrow z)) = \nu_B(x) \land \nu_B(1) = \nu_B(x),\]
\[(10) \quad \mu_B(y \rightarrow z) \leq \mu_B(x) \lor \mu_B(x \rightarrow (y \rightarrow z)) = \mu_B(x) \lor \mu_B(1) = \mu_B(x).\]
Aplying Theorem 1 (ii) the second time we obtain
\[(11) \quad \nu_B(z) \geq \nu_B(y) \land \nu_B(y \rightarrow z),\]
\[(12) \quad \mu_B(z) \leq \mu_B(y) \lor \mu_B(y \rightarrow z).\]
(9), (10), (11) and (12) force $\nu_B(z) \geq \nu_B(x) \land \nu_B(y)$ and $\mu_B(z) \leq \mu_B(x) \lor \mu_B(y)$.

(ii)⇒(i) Let B be an IF-set of a pseudo-BL-algebra A which satisfies (3). Let $x, y \in A$ be such that $x \leq y$. By Lemma 1 (iv) and (v),
\[x \rightarrow (x \rightarrow y) = 1,\]
hence applying (5) and (6) we have
\[\nu_B(y) \geq \nu_B(x) \land \nu_B(x \rightarrow y),\]
\[\mu_B(y) \leq \mu_B(x) \lor \mu_B(x),\]
that is, (IF3) holds.

Now we prove that (1) and (2) hold. By Lemma 1 (vi), $(x \rightarrow y) \rightarrow (x \rightarrow y) = 1$. Thus, applying (5) and (6) we get
\[\nu_B(y) \geq \nu_B(x \rightarrow y) \land \nu_B(x)\]
\[\mu_B(y) \leq \mu_B(x \rightarrow y) \lor \mu_B(x).\]
Hence by Theorem 1, B is an IF-filter.

(iii)⇔(i) Analogously. \qed

Proposition 5. Let B be an IF-set of a pseudo-BL-algebra A. The following are equivalent:

(i) B is an IF-filter;
(ii) for all $x, y, z \in A$
\[(x \circ y) \rightarrow z = 1 \Rightarrow \nu_B(z) \geq \nu_B(x) \land \nu_B(y),\]
\[(x \circ y) \rightarrow z = 1 \Rightarrow \mu_B(z) \leq \mu_B(x) \lor \mu_B(y),\]
(iii) for all $x, y, z \in A$

$$(x \circ y) \rightsquigarrow z = 1 \Rightarrow \nu_B(z) \geq \nu_B(x) \land \nu_B(y),$$

$$(x \circ y) \rightsquigarrow z = 1 \Rightarrow \mu_B(z) \leq \mu_B(x) \lor \mu_B(y).$$

Proof. By Proposition 4 and Lemma 1 (vii). ■

Let $B_i = (\nu_{B_i}, \mu_{B_i})$ be IF-filters of a pseudo-BL-algebra A for every $i \in I$. We define fuzzy sets $\bigwedge_{i \in I} \nu_{B_i}$ and $\bigvee_{i \in I} \mu_{B_i}$ as follows:

$$\left(\bigwedge_{i \in I} \nu_{B_i} \right)(x) = \bigwedge \{ \nu_{B_i}(x) : i \in I \},$$

$$\left(\bigvee_{i \in I} \mu_{B_i} \right)(x) = \bigvee \{ \mu_{B_i}(x) : i \in I \}.$$

For any IF-filters $B_i = (\nu_{B_i}, \mu_{B_i})$ for $i \in I$, of a pseudo-BL-algebra A we define the IF-set $\bigcap_{i \in I} B_i$ of A by

$$\bigcap_{i \in I} B_i = \left(\bigwedge_{i \in I} \nu_{B_i}, \bigvee_{i \in I} \mu_{B_i} \right).$$

Theorem 2. Let $B_i = (\nu_{B_i}, \mu_{B_i})$ for $i \in I$, be IF-filters of a pseudo-BL-algebra A. Then $\bigcap_{i \in I} B_i$ is an IF-filter of A.

Proof. Let $B_i = (\nu_{B_i}, \mu_{B_i})$ for $i \in I$, be IF-filters of a pseudo-BL-algebra A and

$$B = \bigcap_{i \in I} B_i = (\nu_B, \mu_B).$$

We use Proposition 4 to show that B is an IF-filter of A.

Let $x, y, z \in A$ be such that $x \rightarrow (y \rightarrow z) = 1$. Hence

$$\nu_B(z) = \bigwedge_{i \in I} \nu_{B_i}(z) \geq \bigwedge_{i \in I} (\nu_{B_i}(x) \land \nu_{B_i}(y)) = \bigwedge_{i \in I} \nu_{B_i}(x) \land \bigwedge_{i \in I} \nu_{B_i}(y) = \nu_B(x) \land \nu_B(y),$$

$$\mu_B(z) = \bigvee_{i \in I} \mu_{B_i}(z) \leq \bigvee_{i \in I} (\mu_{B_i}(x) \lor \mu_{B_i}(y)) = \bigvee_{i \in I} \mu_{B_i}(x) \lor \bigvee_{i \in I} \mu_{B_i}(y) = \mu_B(x) \lor \mu_B(y).$$

The proof is closed. ■

Remark 5. The set of IF-filters of a pseudo-BL-algebra A forms a complete distributive lattice with relation \leq.
Proof. Since [0, 1] is a complete distributive lattice with usual ordering and by Theorem 2, the proof is completed.

Theorem 3. A lattice of IF-filters of a pseudo-BL-algebra \(A \) is bounded.

Proof. It is easily seen that \(0_\sim \) and \(1_\sim \) are IF-filters. Since \(0_\sim \leq B \leq 1_\sim \) for every IF-filter \(B \), then a lattice of IF-filters is bounded.

Theorem 4. The lattice of IF-filters of a pseudo-BL-algebras has no atoms.

Proof. Let \(B \) be an IF-set of a pseudo-BL-algebra \(A \) and \(B \neq 0_\sim \). Let us define an IF-set \(D \) as follows

\[
D = \left(\frac{1}{2} \nu_B, \frac{1}{2} \mu_B \right).
\]

It is obvious that \(D \) is an IF-filter of \(A \) and \(0_\sim < D < B \). Hence there are no atoms in a lattice of IF-filters of \(A \).

Let \(B \) be an IF-set of a pseudo-BL-algebra \(A \) and \(\alpha, \beta \in [0, 1] \) be such that \(\alpha + \beta \leq 1 \). Then we can define a set

\[
A_B^{(\alpha, \beta)} = \{ x \in A : \nu_B(x) \geq \alpha, \mu_B(x) \leq \beta \}
\]
called an \((\alpha, \beta)\)-level of \(B \).

Let us notice that \(A_B^{(\alpha, \beta)} = U(\nu_B, \alpha) \cap L(\mu_B, \beta) \).

Theorem 5. Let \(B \) be an IF-set of a pseudo-BL-algebra \(A \). If \(B \) is an IF-filter of \(A \), then \(A_B^{(\alpha, \beta)} = \emptyset \) or \(A_B^{(\alpha, \beta)} \) is a filter of \(A \) for all \(\alpha \in [0, \nu_B(1)] \), \(\beta \in [\mu_B(1), 1] \) such that \(\alpha + \beta \leq 1 \).

Proof. By Theorem 3.10 of [13] and Theorem 3.6 of [11] \(\nu_B \) is a fuzzy filter and \(\mu_B \) is an anti fuzzy filter iff \(U(\nu_B, \alpha) \) and \(L(\mu_B, \beta) \) are filters or empty. According to fact that the intersection of filters is a filter and by Remark 4 we have the thesis.

Corollary 1. If \(B \) is an IF-filter of a pseudo-BL-algebra \(A \), then the set

\[
A_b = \{ x \in A : \nu_B(x) \geq \nu_B(b), \mu_B(x) \leq \mu_B(b) \}
\]
is a filter of \(A \) for every \(b \in A \) such that \(\nu_B(b) + \mu_B(b) \leq 1 \).
4. PRIME IF-FILTERS

In this section we introduce and study prime IF-filters and their connection with pseudo-BL-chains.

Definition 9. An IF-filter $\mathcal{B} = (\nu_{\mathcal{B}}, \mu_{\mathcal{B}})$ of a pseudo-BL-algebra A is said to be prime IF-filter if $\nu_{\mathcal{B}}$ and $\mu_{\mathcal{B}}$ are non-constant and satisfies following conditions for all $x, y \in A$:

\[\nu_{\mathcal{B}}(x \lor y) = \nu_{\mathcal{B}}(x) \lor \nu_{\mathcal{B}}(y) \quad \text{and} \quad \mu_{\mathcal{B}}(x \lor y) = \mu_{\mathcal{B}}(x) \land \mu_{\mathcal{B}}(y). \]

Remark 6. An IF-filter $\mathcal{B} = (\nu_{\mathcal{B}}, \mu_{\mathcal{B}})$ of a pseudo-BL-algebra A is said to be prime IF-filter iff $\nu_{\mathcal{B}}$ is a fuzzy prime filter and $\mu_{\mathcal{B}}$ is an anti fuzzy prime filter of A.

Theorem 6. Let $\mathcal{B} = (\nu_{\mathcal{B}}, \mu_{\mathcal{B}})$ be a non-constant IF-filter of a pseudo-BL-algebra A. Then the following are equivalent:

(i) \mathcal{B} is a prime IF-filter of A;

(ii) for all $x, y \in A$, if $(\nu_{\mathcal{B}}(x \lor y) = \nu_{\mathcal{B}}(1) \quad \text{and} \quad \mu_{\mathcal{B}}(x \lor y) = \mu_{\mathcal{B}}(1))$, then

\[(\nu_{\mathcal{B}}(x) = \nu_{\mathcal{B}}(1) \quad \text{or} \quad \nu_{\mathcal{B}}(y) = \nu_{\mathcal{B}}(1)) \quad \text{and} \quad (\mu_{\mathcal{B}}(x) = \mu_{\mathcal{B}}(1) \quad \text{or} \quad \mu_{\mathcal{B}}(y) = \mu_{\mathcal{B}}(1)); \]

(iii) for all $x, y \in A$,

\[(\nu_{\mathcal{B}}(x \rightarrow y) = \nu_{\mathcal{B}}(1) \quad \text{or} \quad \nu_{\mathcal{B}}(y \rightarrow x) = \nu_{\mathcal{B}}(1)) \quad \text{and} \quad (\mu_{\mathcal{B}}(x \rightarrow y) = \mu_{\mathcal{B}}(1) \quad \text{or} \quad \mu_{\mathcal{B}}(y \rightarrow x) = \mu_{\mathcal{B}}(1)); \]

(iv) for all $x, y \in A$,

\[(\nu_{\mathcal{B}}(x \multimap y) = \nu_{\mathcal{B}}(1) \quad \text{or} \quad \nu_{\mathcal{B}}(y \multimap x) = \nu_{\mathcal{B}}(1)) \quad \text{and} \quad (\mu_{\mathcal{B}}(x \multimap y) = \mu_{\mathcal{B}}(1) \quad \text{or} \quad \mu_{\mathcal{B}}(y \multimap x) = \mu_{\mathcal{B}}(1)). \]

Theorem 7. Let A be a pseudo-BL-algebra and \mathcal{B} be an IF-filter of A. Then \mathcal{B} is a prime IF-filter iff $M_{\nu_{\mathcal{B}}}$ and $A_{\mu_{\mathcal{B}}}$ are prime filters of A.

Proof. By Remark 3.

Theorem 8. Let A be a pseudo-BL-algebra, P be a filter of A and $\alpha, \beta \in [0, 1]$ with $\alpha > \beta$. Then P is a prime filter of A if and only if $B(P) = (\mu_P(\alpha, \beta), \mu_P'(1 - \alpha, 1 - \beta))$ define as in Example 1, is a prime IF-filter of A.

Theorem 9. Let B be an IF-set of a pseudo-BL-algebra A such that ν_B and μ_B are non-constant. Then the following are equivalent:

(i) B is a prime IF-filter of A;

(ii) for every $\alpha \in [0, 1]$, if $U(\nu_B, \alpha), L(\mu_B, \alpha) \neq \emptyset$ and $U(\nu_B, \alpha), L(\mu_B, \alpha) \neq A$, then $U(\nu_B, \alpha), L(\mu_B, \alpha)$ are prime filters of A.

Theorem 10. Let A be a non-trivial pseudo-BL-algebra. The following are equivalent:

(i) A is a pseudo-BL-chain;

(ii) every IF-filter B such that ν_B and μ_B are non-constant is a prime IF-filter of A;

(iii) every IF-filter B such that ν_B and μ_B are non-constant, $\nu_B(1) = 1$ and $\mu_B(1) = 0$ is a prime IF-filter of A;

(iv) the IF-filter $\left(\chi_{\{1\}}, \chi_{\{1\}}^C\right)$ is a prime IF-filter of A.

5. Homomorphism and IF-filters

Let A, B be pseudo-BL-algebras. Following [3] we define a homomorphism of pseudo-BL-algebras as a mapping $h : A \rightarrow B$ such that the following conditions hold for all $x, y \in A$:

(H1) $h(x \odot y) = h(x) \odot h(y)$;

(H2) $h(x \rightarrow y) = h(x) \rightarrow h(y)$;

(H3) $h(x \hookrightarrow y) = h(x) \hookrightarrow h(y)$;

(H4) $h(0) = 0$.

Recall that if $h : A \rightarrow B$ is a homomorphism of pseudo-BL-algebras, then

(H5) $h(1) = 1$;

(H6) $h(x \land y) = h(x) \land h(y)$;
(H7) \(h(x \lor y) = h(x) \lor h(y) \).

Definition 10. Let \(\mathcal{B} \) be an IF-filer of a pseudo-BL-algebra \(B \) and \(f : A \to B \) be a homomorphism of pseudo-BL-algebras. The preimage of \(\mathcal{B} \) is the IF-set \(\mathcal{B}^f = (\nu^f_B, \mu^f_B) \) defined by

\[
\nu^f_B(x) = \nu_B(f(x)) \quad \text{and} \quad \mu^f_B(x) = \mu_B(f(x))
\]

for all \(x \in A \).

Theorem 11. Let \(\mathcal{B} \) be an IF-filter of \(B \) and \(f : A \to B \) be a homomorphism of pseudo-BL-algebras. Then \(\mathcal{B}^f \) is an IF-filter of \(A \).

Proof. Suppose that \(f : A \to B \) is a homomorphism of pseudo-BL-algebras and \(\mathcal{B} \) be an IF-filter of \(B \). Let \(x, y \in A \). Then

\[
\nu^f_B(x \circ y) = \nu_B(f(x \circ y)) = \nu_B(f(x) \circ f(y)) \\
\geq \nu_B(f(x)) \land \nu_B(f(y)) = \nu^f_B(x) \land \nu^f_B(y)
\]

and

\[
\mu^f_B(x \circ y) = \mu_B(f(x \circ y)) = \mu_B(f(x) \circ f(y)) \\
\leq \mu_B(f(x)) \lor \mu_B(f(y)) = \mu^f_B(x) \lor \mu^f_B(y).
\]

Hence (IF1) and (IF2) hold.

Now let \(x, y \in A \) be such that \(x \leq y \). Therefore,

\[
\nu^f_B(x) = \nu^f_B(x \land y) = \nu_B(f(x \land y)) \\
= \nu_B(f(x) \land f(y)) \leq \nu_B(f(y)) = \nu^f_B(y)
\]

and

\[
\mu^f_B(x) = \mu^f_B(x \land y) = \mu_B(f(x \land y)) \\
= \mu_B(f(x) \land f(y)) \geq \mu_B(f(y)) = \mu^f_B(y).
\]

Thus, (IF3) holds.

Concluding, \(\mathcal{B}^f \) is an IF-filter of \(A \).

Theorem 12. Let \(\mathcal{B} \) be an IF-set of \(B \), \(\mathcal{B}^f \) be an IF-filter of \(A \), where \(f : A \to B \) is an epimorphism of pseudo-BL-algebras. Then \(\mathcal{B} \) is an IF-filter of \(A \).
Proof. Let \(f : A \to B \) be an epimorphism of pseudo-BL-algebras. Then, for any \(x, y \in B \), there exist \(a, b \in A \) such that \(x = f(a) \) and \(y = f(b) \). Therefore,

\[
\nu_B(x \circ y) = \nu_B((a \circ f(b)) = \nu_B(f(a \circ b))
\]

\[
= \nu_B^f(a \circ b) \geq \nu_B^f(a) \land \nu_B^f(b)
\]

\[
= \nu_B(f(a)) \land \nu_B(f(b)) = \nu_B(x) \land \nu_B(y)
\]

and

\[
\mu_B(x \circ y) = \mu_B((a \circ f(b)) = \mu_B(f(a \circ b))
\]

\[
= \mu_B^f(a \circ b) \leq \mu_B^f(a) \lor \mu_B^f(b)
\]

\[
= \mu_B(f(a)) \lor \mu_B(f(b)) = \mu_B(x) \lor \mu_B(y).
\]

Hence (IF1) and (IF2) hold.

Now let \(x, y \in B \) be such that \(x \leq y \). Then, there exist \(a, b \in A \) such that \(x = f(a) \) and \(y = f(b) \). Therefore,

\[
\nu_B(x) = \nu_B(x \land y) = \nu_B((a \land f(b)) = \nu_B((a \land b))
\]

\[
= \nu_B^f(a \land b) \leq \nu_B^f(b) = \nu_B(f(b)) = \nu_B(y)
\]

and

\[
\mu_B(x) = \mu_B(x \land y) = \mu_B((a \land f(b)) = \mu_B((a \land b))
\]

\[
= \mu_B^f(a \land b) \geq \mu_B^f(b) = \mu_B(f(b)) = \mu_B(y).
\]

Thus, (IF3) holds.

Concluding, \(B \) is an IF-filter of \(B \).

Now let us denote the set of all filters of pseudo-BL-algebra \(A \) by \(Fil(A) \) and the set of all IF-filters of \(A \) by \(IFil(A) \). Let \(\alpha \in (0, 1) \). We define maps \(f_\alpha : IFil(A) \to Fil(A) \cup \{\emptyset\} \) and \(g_\alpha : IFil(A) \to Fil(A) \cup \{\emptyset\} \) by

\[
f_\alpha(B) = U(\nu_B, \alpha),
\]

\[
g_\alpha(B) = L(\mu_B, \alpha)
\]

for all \(B = (\nu_B, \mu_B) \in IFil(A) \).

Theorem 13. For any \(\alpha \in (0, 1) \), the maps \(f_\alpha \) and \(g_\alpha \) are surjective from \(IFil(A) \) onto \(Fil(A) \cup \{\emptyset\} \).
Therefore, $f_\alpha(0,_)$ is $U(0,\alpha) = \emptyset = L(1,\alpha) = g_\alpha(0,_).$

Now let $\emptyset \neq F \in \text{Fil}(A).$ Then (χ_F, χ_F^C) is an IF-filter of $A.$ Hence,

$$f_\alpha((\chi_F, \chi_F^C)) = U(\chi_F, \alpha) = F = L(\chi_F^C, \alpha) = g_\alpha((\chi_F, \chi_F^C)).$$

Therefore, f_α and g_α are surjective.

6. Direct product of IF-filters

Let us define a direct product $\prod_{i \in I} A_i$ of pseudo-BL-algebras as usually.

Definition 11. Let A be a pseudo-BL-algebra. Then we define an IF-relation on A as a mapping $R = (\nu^R, \mu^R) : A \times A \rightarrow [0, 1] \times [0, 1]$ such that $\nu^R(x, y) + \mu^R(x, y) \leq 1$ for all $x, y \in A.$

Now define a direct product of IF-sets of pseudo-BL-algebra $A.$

Definition 12. Let $\mathcal{B} = (\nu_B, \mu_B)$ and $\mathcal{G} = (\nu_G, \mu_G)$ be IF-sets of $A.$ We define a direct product $\mathcal{B} \times \mathcal{G}$ by

$$\mathcal{B} \times \mathcal{G} = (\nu_B, \mu_B) \times (\nu_G, \mu_G) = (\nu_B \times \nu_G, \mu_B \times \mu_G),$$

where $(\nu_B \times \nu_G)(x, y) = \nu_B(x) \land \nu_G(y)$ and $(\mu_B \times \mu_G)(x, y) = \mu_B(x) \lor \mu_G(y)$ for all $x, y \in A.$

Proposition 6. Let $\mathcal{B} = (\nu_B, \mu_B)$ and $\mathcal{G} = (\nu_G, \mu_G)$ be IF-sets of a pseudo-BL-algebra $A,$ then $\mathcal{B} \times \mathcal{G}$ is an IF-set of $A \times A.$

Proof. Let \mathcal{B}, \mathcal{G} be IF-sets of $A.$ Then for every $x \in A$ we have $\nu_B(x) + \mu_B(x) \leq 1$ and $\nu_G(x) + \mu_G(x) \leq 1.$ Suppose that $\nu_B(x) \leq \nu_G(y)$ for some $x, y \in A.$ Then $(\nu_B \times \nu_G)(x, y) = \nu_B(x) \land \nu_G(y) = \nu_B(x).$ Let us consider two cases:

Case 1. $\mu_B(x) \leq \mu_G(y)$

Hence $(\mu_B \times \mu_G)(x, y) = \mu_B(x) \lor \mu_G(y) = \mu_G(y)$ and then $(\nu_B \times \nu_G)(x, y) + (\mu_B \times \mu_G)(x, y) = \nu_B(x) + \mu_G(y) \leq \nu_G(y) + \mu_G(y) \leq 1.$

Case 2. $\mu_B(x) > \mu_G(y)$

Therefore $(\mu_B \times \mu_G)(x, y) = \mu_B(x) \lor \mu_G(y) = \mu_B(x)$ and then $(\nu_B \times \nu_G)(x, y) + (\mu_B \times \mu_G)(x, y) = \nu_B(x) + \mu_B(x) \leq 1.$ Hence $\mathcal{B} \times \mathcal{G}$ is an IF-set of $A \times A.$

Analogously when $\nu_B(x) > \nu_G(y).$
Now we give a trivial Proposition without a proof:

Proposition 7. Let $\mathcal{B} = (\nu_{\mathcal{B}}, \mu_{\mathcal{B}})$ and $\mathcal{G} = (\nu_{\mathcal{G}}, \mu_{\mathcal{G}})$ be IF-sets of a pseudo-BL-algebra A, then

(i) $\mathcal{B} \times \mathcal{G}$ is an IF-relation of A;

(ii) $U(\nu_{\mathcal{B}} \times \nu_{\mathcal{G}}; \alpha) = U(\nu_{\mathcal{B}}; \alpha) \times U(\nu_{\mathcal{G}}; \alpha)$ and $L(\mu_{\mathcal{B}} \times \mu_{\mathcal{G}}; \alpha) = L(\mu_{\mathcal{B}}; \alpha) \times L(\mu_{\mathcal{G}}; \alpha)$ for all $\alpha \in [0, 1]$.

Theorem 14. Let $\mathcal{B} = (\nu_{\mathcal{B}}, \mu_{\mathcal{B}})$ and $\mathcal{G} = (\nu_{\mathcal{G}}, \mu_{\mathcal{G}})$ be IF-filters of a pseudo-BL-algebra A. Then $\mathcal{B} \times \mathcal{G}$ is an IF-filter of $A \times A$.

Proof. Let $\mathcal{B} = (\nu_{\mathcal{B}}, \mu_{\mathcal{B}})$ and $\mathcal{G} = (\nu_{\mathcal{G}}, \mu_{\mathcal{G}})$ be IF-filters of a pseudo-BL-algebra A. Suppose that $x, y \in A$. Then by (IF1) and (IF2), $\nu_{\mathcal{B}}(x \circ y) \geq \nu_{\mathcal{B}}(x) \land \nu_{\mathcal{B}}(y)$, $\nu_{\mathcal{G}}(x \circ y) \geq \nu_{\mathcal{G}}(x) \land \nu_{\mathcal{G}}(y)$ and $\mu_{\mathcal{B}}(x \circ y) \leq \mu_{\mathcal{B}}(x) \lor \mu_{\mathcal{B}}(y)$, $\mu_{\mathcal{G}}(x \circ y) \leq \mu_{\mathcal{G}}(x) \lor \mu_{\mathcal{G}}(y)$. Let $(x_1, x_2), (y_1, y_2) \in A \times A$. Then,

\[
(\nu_{\mathcal{B}} \times \nu_{\mathcal{G}})((x_1, x_2) \circ (y_1, y_2)) = (\nu_{\mathcal{B}} \times \nu_{\mathcal{G}})(x_1 \circ y_1, x_2 \circ y_2)
= \nu_{\mathcal{B}}(x_1 \circ y_1) \land \nu_{\mathcal{G}}(x_2 \circ y_2)
\geq \nu_{\mathcal{B}}(x_1) \land \nu_{\mathcal{B}}(y_1) \land \nu_{\mathcal{G}}(x_2) \land \nu_{\mathcal{G}}(y_2)
= (\nu_{\mathcal{B}}(x_1) \land \nu_{\mathcal{G}}(x_2)) \land (\nu_{\mathcal{B}}(y_1) \land \nu_{\mathcal{G}}(y_2))
= (\nu_{\mathcal{B}} \times \nu_{\mathcal{G}})(x_1, x_2) \land (\nu_{\mathcal{B}} \times \nu_{\mathcal{G}})(y_1, y_2).
\]

Similarly, we can prove that $(\mu_{\mathcal{B}} \times \mu_{\mathcal{G}})((x_1, x_2) \circ (y_1, y_2)) \leq (\mu_{\mathcal{B}} \times \mu_{\mathcal{G}})(x_1, x_2) \lor (\mu_{\mathcal{B}} \times \mu_{\mathcal{G}})(y_1, y_2)$.

It is proved that (IF1) and (IF2) hold.

Now let $(x_1, x_2), (y_1, y_2) \in A \times A$ be such that $(x_1, x_2) \leq (y_1, y_2)$. Then

\[
(\nu_{\mathcal{B}} \times \nu_{\mathcal{G}})(x_1, x_2) = (\nu_{\mathcal{B}} \times \nu_{\mathcal{G}})((x_1, x_2) \land (y_1, y_2))
= (\nu_{\mathcal{B}} \times \nu_{\mathcal{G}})(x_1 \land y_1, x_2 \land y_2)
= \nu_{\mathcal{B}}(x_1 \land y_1) \land \nu_{\mathcal{G}}(x_2 \land y_2)
\leq \nu_{\mathcal{B}}(y_1) \land \nu_{\mathcal{G}}(y_2)
= (\nu_{\mathcal{B}} \times \nu_{\mathcal{G}})(y_1, y_2).
\]

and similarly $(\mu_{\mathcal{B}} \times \mu_{\mathcal{G}})(x_1, x_2) \geq (\mu_{\mathcal{B}} \times \mu_{\mathcal{G}})(y_1, y_2)$.

The proof is completed. ■

Theorem 15. Let $\mathcal{B} = (\nu_{\mathcal{B}}, \mu_{\mathcal{B}})$ be IF-set of a pseudo-BL-algebra A. Then \mathcal{B} is an IF-filter of A if and only if $\mathcal{B} \times \mathcal{B}$ is an IF-filter of $A \times A$.
Proof. \Rightarrow: By Theorem 14.
\Leftarrow: Let $B \times B$ be an IF-filter of $A \times A$. Let $(x_1, x_2), (y_1, y_2) \in A \times A$. Hence
\[
\nu_B(x_1 \circ y_1) \land \nu_B(x_2 \circ y_2) = (\nu_B \times \nu_B)(x_1 \circ y_1, x_2 \circ y_2) = (\nu_B \times \nu_B)((x_1, x_2) \circ (y_1, y_2)) \geq (\nu_B \times \nu_B)(x_1, x_2) \land (\nu_B \times \nu_B)(y_1, y_2) = \nu_B(x_1) \land \nu_B(x_2) \land \nu_B(y_1) \land \nu_B(y_2).
\]
Putting $x_1 = x_2$ and $y_1 = y_2$ we have
\[
\nu_B(x_1 \circ y_1) \geq \nu_B(x_1) \land \nu_B(x_1) \land \nu_B(y_1) = \nu_B(x_1) \land \nu_B(y_1).
\]
Similarly, $\mu_B(x_1 \circ y_1) \leq \mu_B(x_1) \lor \mu_B(y_1)$.

Let $x, y \in A$ be such that $x \leq y$. Then by (IF3),
\[
\nu_B(x) = (\nu_B \times \nu_B)(x, x) \leq (\nu_B \times \nu_B)(y, y) = \nu_B(y).
\]
Analogously, $\mu_B(x) \geq \mu_B(y)$.

Hence $B = (\nu_B, \mu_B)$ is an IF-filter of A. \blacksquare

Acknowledgements

The author thanks the referee for his/her remarks which were incorporated into this revised version.

References

Received 13 April 2015
Revised 21 May 2015