ArticleOriginal scientific text

Title

IF-filters of pseudo-BL-algebras

Authors 1

Affiliations

  1. Institute of Mathematics and Physics, University of Natural Sciences and Humanities, 3 Maja 54, 08-110 Siedlce, Poland

Abstract

Characterizations of IF-filters of a pseudo-BL-algebra are established. Some related properties are investigated. The notation of prime IF- filters and a characterization of a pseudo-BL-chain are given. Homomorphisms of IF-filters and direct product of IF-filters are studied.

Keywords

pseudo-BL-algebra, filter, IF-filter, prime IF-filters, pseudo-BL-chain, homomorphism, direct product

Bibliography

  1. K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20 (1986), 87-96. doi: 10.1016/s0165-0114(86)80034-3
  2. C.C. Chang, Algebraic analysis of many valued logics, Trans. Amer. Math. Soc. 88 (1958), 467-490. doi: 10.1090/S0002-9947-1958-0094302-9
  3. A. Di Nola, G. Georgescu and A. Iorgulescu, Pseudo-BL algebras I, Multiple-Valued Logic 8 (2002), 673-714.
  4. A. Di Nola, G. Georgescu and A. Iorgulescu, Pseudo-BL algebras II, Multiple-Valued Logic 8 (2002), 717-750.
  5. G. Georgescu and A. Iorgulescu, Pseudo-MV algebras: a noncommutative extension of MV-algebras, The Proceedings of the Fourth International Symposium on Economic Informatics (Bucharest, Romania, May, 1999), 961-968.
  6. G. Georgescu and A. Iorgulescu, Pseudo-BL algebras: a noncommutative extension of BL-algebras, Abstracts of the Fifth International Conference FSTA 2000 (Slovakia, 2000), 90-92.
  7. G. Georgescu and L.L. Leuştean, Some classes of pseudo-BL algebras, J. Austral. Math. Soc. 73 (2002), 127-153. doi: 10.1017/s144678870000851x
  8. P. Hájek, Metamathematics of fuzzy logic, Inst. of Comp. Science, Academy of Science of Czech Rep. Technical report 682 (1996).
  9. P. Hájek, Metamathematics of Fuzzy Logic (Kluwer Acad. Publ., Dordrecht, 1998). doi: 10.1007/978-94-011-5300-3
  10. J. Rachůnek, A non-commutative generalization of MV algebras, Czechoslovak Math. J. 52 (2002), 255-273.
  11. J. Rachůnek and D. Šalounová, Fuzzy filters and fuzzy prime filters of bounded Rl-monoids and pseudo-BLalgebras, Information Sciences 178 (2008), 3474-3481. doi: 10.1016/j.ins.2008.05.005
  12. G. Takeuti and S. Titants, Intuitionistic fuzzy logic and Intuitionistic fuzzy sets theory, Journal of Symbolic Logic 49 (1984), 851-866.
  13. M. Wojciechowska-Rysiawa, Anti fuzzy filters of pseudo-BL algebras, Comment. Math. 51 (2011), 155-167.
  14. L.A. Zadeh, Fuzzy sets, Inform. Control 8 (1965), 338-353. doi: 10.1016/S0019-9958(65)90241-X
Pages:
177-193
Main language of publication
English
Received
2015-05-13
Published
2015
Exact and natural sciences