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Abstract

Let R be a commutative ring with identity and A∗(R) the set of non-
zero ideals with non-zero annihilators. The annihilating-ideal graph of R
is defined as the graph AG(R) with the vertex set A∗(R) and two distinct
vertices I1 and I2 are adjacent if and only if I1I2 = (0). In this paper, we
examine the presence of cut vertices and cut sets in the annihilating-ideal
graph of a commutative Artinian ring and provide a partial classification of
the rings in which they appear. Using this, we obtain the vertex connectivity
of some annihilating-ideal graphs.
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1. Introduction

The study of algebraic structures, using the properties of graphs, became an
exciting research topic in the past twenty years, leading to many fascinating
results and questions. In the literature, there are many papers assigning graphs
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to rings, groups and semigroups. Let R be a commutative ring with identity. In
[1], D.F. Anderson and P.S. Livingston associate a graph called zero-divisor graph,
Γ(R) to R with vertices Z(R)∗, the set of non-zero zero-divisors of R, and for two
distinct x, y ∈ Z(R)∗, the vertices x and y are adjacent if and only if xy = 0 in
R. Recently M. Behboodi and Z. Rakeei [4, 5] have introduced and investigated
the annihilating-ideal graph of a commutative ring. We call an ideal I1 of R, an
annihilating-ideal if there exists a non-zero ideal I2 of R such that I1I2 = (0).
For a non-domain commutative ring R, let J(R) be the Jacobson radical of R,
〈x〉 be the ideal of R generated by x and A

∗(R) be the set of non-zero ideals with
non-zero annihilators. The annihilating-ideal graph of R is defined as the graph
AG(R) with the vertex set A∗(R) and two distinct vertices I1 and I2 are adjacent
if and only if I1I2 = (0).

An ideal I of R is called nil-ideal if there exists a positive integer n such that
In = 0 and In−1 6= (0). This integer n is called the nilpotency of the ideal. The
annihilator of a ∈ R is the set of all elements x in R such that ax = 0 and is
denoted by ann(a). Let I be a non-zero ideal in R, ann(I) = {x ∈ R : xa =
0 for all a ∈ I}. For basic definitions on rings, one may refer [2, 8].

Let G = (V,E) be a simple connected graph. For a vertex v ∈ V (G), the
neighborhood (degree) of v, denoted by NG(v) (degG(v)), is the set (number) of
vertices other than v which are adjacent to v. We denote by δ(G) and ∆(G) the
minimum and maximum degrees of the vertices of G. The distance between two
vertices x and y, denoted d(x, y), is the length of the shortest path from x to
y. The diameter of a connected graph G is the maximum distance between two
distinct vertices of G. For any vertex x of a connected graph G, the eccentricity

of x, denoted e(x), is the maximum of the distances from x to the other vertices of
G. The set of vertices with minimum eccentricity is called the center of the graph
G. A set Ω ⊂ V (G) is said to be a cut set if there exist distinct c, d ∈ V (G)r Ω
such that every path in G from c to d involves at least one element of Ω, and
no proper subset of Ω satisfies the same condition. A cut set consisting of only
one element is called cut vertex. The connectivity or vertex connectivity κ(G) is
the size of a cut set with minimum cardinality. The edge cut of G is a set of
edges whose removal render the graph disconnected. The edge connectivity κ′(G)
is the size of an edge cut with minimum cardinality in G. For basic definitions
on graphs, one may refer [6, 11]. The following theorems are useful for further
reference in this paper.

Theorem 1.1 [3]. Let (R,m) be a finite local ring and let k be the nilpotency of

m. If x is a cut vertex of Γ(R), then m
k−1 = {0, x}.

Theorem 1.2 [3]. Let (R,m) be a finite local ring and let k be the nilpotency

of m. If x is a cut vertex of Γ(R) for some x ∈ Z(R)∗, then |R| = 2n+1 and

|m| = 2n for some n ∈ N. Hence R has characteristic 2t for some t ∈ N.
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Theorem 1.3 [7]. Let n be a positive integer such that n 6= p, 2p, p2 for any

prime p. Then A is a cut set of Γ(Zn) if and only if A = ann∗(p) for some p|n.

Theorem 1.4 [7]. Let R =
∏n

i=1 Ri with n ≥ 2. If A is a cut vertex of Γ(R),
then there exists some i, 1 ≤ i ≤ n, such that if a = (a1, a2, . . . , an) ∈ A, then
ak = 0 for all k 6= i.

Theorem 1.5 [7]. Let R =
∏n

i=1 Ri be a ring, where each Ri is a field and n ≥ 2.
If A is a cut set of Γ(R), then A = {(0, . . . , 0, xi, 0, . . . , 0) : xi ∈ R∗

i }.

In this paper, we examine the presence of cut vertices and cut sets in the annihilating-
ideal graph of a finite commutative ring and provide a partial classification of the
rings in which they appear. Using this, we obtain the vertex connectivity of some
annihilating-ideal graphs. Also we study some connections between the graph-
theoretic properties of this graph and some algebraic properties of a commutative
ring.

2. Cut vertex and cut set of AG(R): the local case

In this section, we examine the presence of cut vertices in the annihilating-ideal
graph of a finite commutative local rings and provide a partial classification of
the rings in which they appear. Let I be an ideal in R.

Throughout, we assume that R is a finite commutative ring with identity,
Z(R) its set of zero-divisors, R∗ = Rr {0} and I∗ = I r {0}, where I is an ideal
in R.

Remark 2.1. Let (R,m) be a finite local ring and let k be the nilpotency of m.
If k = 2, then AG(R) is complete.

Hereafter, if (R,m) is a finite local ring, then we take the unique maximal ideal
as m and its nilpotency as k > 3.

Proposition 2.2. Let R be a finite commutative ring. If I is a cut vertex of

AG(R), then ann(I) is a maximal ideal of R.

Proof. Suppose that ann(I) is not maximal. Then there exists a maximal ideal
M in R such that ann(I) ⊂ M . Since AG(R) is connected, there exists an ideal
J 6= I and J is adjacent toM , i.e., JM = (0). This implies thatM ⊂ ann(J) ⊂ R
and so ann(J) = M . Thus ann(I) ⊂ ann(J) ⊂ R. Let I1−· · ·− I −· · ·− I2 be a
path between two ideals I1 and I2 in AG(R) containing I. Then there exist ideals
K1, K2 and K1 6= K2 such that K1 and K2 are adjacent to I. i.e., K1I = (0)
and K2I = (0). Therefore K1,K2 ⊆ ann(I) ⊂ ann(J) and so K1 and K2 are also
adjacent to J . Thus there exists a path I1 − · · · − J − · · · − I2 in AG(R) without
containing I, a contradiction.
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Remark 2.3. Converse of the Proposition 2.2 is not true. For example, let
R = Z2[x,y]

〈x,y〉2
be a local ring. Then Z(R) = {0, x, y, x+ y}, I1 = {0, x}, I2 = {0, y},

I3 = {0, x + y} are nonzero proper ideals of R and AG(R) ∼= K4. Here ann(I1)
is maximal ideal of R. However I1 is a not a cut vertex of AG(R).

Proposition 2.4. Let (R,m) be a finite local ring and let k be the nilpotency of

m. If I is a cut vertex in AG(R), then I = m
k−1.

Proof. Note that any ideal J in R is contained in m and mm
k−1 = (0). This

gives that Jmk−1 = (0) and so mk−1 is adjacent to all the other vertices of AG(R).
Thus if I is a cut vertex, then it should be m

k−1.

Corollary 1. Let (R,m) be a finite local ring and let k be the nilpotency of m.

Then m
k−1 is a cut vertex of AG(R) if and only if degAG(R)(m) = 1.

Proof. Suppose m
k−1 is a cut vertex of AG(R). Note that m

k−1
m = (0). If

degAG(R)(m) > 1, then there exists a nonzero ideal I ′ 6= m
k−1 in R such that

I ′m = (0). Clearly I ′J = (0) for all nonzero ideal J in R and so I ′ is adjacent
to all the other vertices of AG(R). Thus m

k−1 is not a cut vertex of AG(R), a
contradiction. Conversely, if degAG(R)(m) = 1, then m is only adjacent to m

k−1

and so m
k−1 is a cut vertex of AG(R).

Corollary 2. Let (R,m) be a finite local ring and let k be the nilpotency of m.

If AG(R) has a cut vertex, then AG(R) is neither Eulerian nor Hamiltonian.

Theorem 2.5. Let (R,m) be a finite local ring and let k be the nilpotency of m.

If x ∈ Z(R)∗, then x is a cut vertex of Γ(R) if and only if mk−1 = {0, x} is a cut

vertex of AG(R). Hence in this case, R has characteristic 2t for t ∈ N.

Proof. If x is a cut vertex of Γ(R), then by Theorem 1.1, mk−1 = {0, x}. Since
m is maximal and mm

k−1 = (0), I ′ ⊆ m and so I ′mk−1 = (0) for every nonzero
ideal I ′ in R. Since m

k−1 = {0, x} and m
k = 0, m = ann(x). Suppose m

k−1

is not a cut vertex of AG(R). Then the subgraph induced by A∗(R) r {mk−1}
in AG(R) is connected and so there exist a nonzero ideal I1 6= m

k−1 such that
I1m = (0). From this, we get ann(I1) = m and so ann(y) = m for all y ∈ I∗1 .
Since I1 6= m

k−1, y /∈ m
k−1 for some y ∈ I∗1 . Thus y is adjacent to all other

vertices of Γ(R) and so x is not a cut vertex of Γ(R), contradiction.

Converse follows from Theorem 1.1. The later part of the statement follows
from Theorem 1.2.

Theorem 2.6. Let (R,m) be a finite local ring and let k be the nilpotency of m.

If I is a cut vertex in AG(R), then I∗ is the center of Γ(R).
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Proof. By Proposition 2.4, I = m
k−1 and so ann(x) = m for all x ∈ I∗. Thus

for each x ∈ I∗, d(x, y) = 1 for all y ∈ Z(R)∗, y 6= x and so I∗ ⊆ C where
C is the center of Γ(R). Suppose I∗ ⊂ C . Then there exist an element y ∈ C

such that y /∈ I∗. From this, we get ann(y) = m, 〈y〉 6= I, m 〈y〉 = (0) and so
degAG(R)(m) ≥ 2, a contradiction. Hence I∗ = C .

Proposition 2.7. Let n = pk where p is prime number, k > 4 and I be any non-

zero ideal in Zn. Then I is a maximal ideal of Zn if and only if degAG(Zn)(I) = 1.
Hence ann(I) is a cut vertex of AG(Zn).

Proof. If I is a maximal ideal of AG(Zn), then I = 〈p〉 and so I is only adjacent
to

〈

pk−1
〉

. Conversely, assume that degAG(Zn)(I) = 1. If I is not maximal, then
I =

〈

pi
〉

for some i, 2 ≤ i ≤ k − 1. From this, degAG(Zn)(I) ≥ 2, a contradiction.

The converse of the Proposition 2.2 is true in the following theorem.

Theorem 2.8. Let n = pk where p is prime number, k > 4 and I be any non-zero

ideal in Zn. Then the following are equivalent:

(i) I is unique cut vertex of AG(Zn),

(ii) ann(I) is maximal,

(iii) I = ann(〈p〉),

(iv) I∗ is a cut set of Γ(Zn).

Proof. (i)⇒(ii) If I is unique cut vertex of AG(Zn), then I =
〈

pk−1
〉

and so I
is adjacent to every other vertices of AG(Zn). Thus ann(I) is maximal.

(ii)⇒(iii) Suppose ann(I) is maximal. Then ann(I) = 〈p〉, I =
〈

pk−1
〉

and so
I = ann(〈p〉).

(iii)⇒(iv) Suppose I = ann(〈p〉). Then I =
〈

pk−1
〉

. Clearly p ∈ Z∗(Zn) and
p is only adjacent to every elements of I∗. Also no proper subset of I∗ can act as
a cut set of Γ(Zn). Hence I∗ is a cut set of Γ(Zn).

(iv)⇒(i) Suppose I∗ is a cut set of Γ(Zn). Then by Theorem 1.3, I = ann(〈p〉)
and so I =

〈

pk−1
〉

is the unique cut vertex of AG(Zn)

3. Cut vertex and cut set of AG(R): the non-local case

In this section, first we prove that all cut sets in AG(Zn) are nothing but cut
vertices. Next we classify cut vertices and cut sets of the annihilating-ideal graph
of a finite commutative non-local ring.

Remark 3.1. If n = pk11 pk22 . . . pkrr be an integer, where r ≥ 2, p1, p2, . . . , pr are
primes with p1 < p2 < · · · < pr and n 6= pq, where p, q are distinct primes. Let
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I be any non-zero ideal in Zn. Then I is a maximal ideal of Zn if and only if
degAG(Zn)(I) = 1.

In view of Proposition 2.7 and Remark 3.1, we have the following: Let n > 3
be an integer and not a prime number. Then AG(Zn) is neither Eulerian nor
Hamiltonian.

The converse of the Proposition 2.2 is true in the following theorem.

Theorem 3.2. If n = pk11 pk22 . . . pkrr be an integer, where r ≥ 2, p1, p2, . . . , pr are

primes with p1 < p2 < · · · < pr and n 6= pq, where p, q are distinct primes. Let I
be any non-zero ideal in Zn. Then the following are equivalent:

(i) I is a cut vertex of AG(R),

(ii) ann(I) = 〈pi〉 for some i,

(iii) ann(〈pi〉) = I for some i,

(iv) I∗ is a cut set of Γ(Zn).

Proof. (i)⇒(ii) If I is a cut vertex of AG(Zn), then by Proposition 2.2, ann(I) =
〈pi〉 for some i.

(ii)⇒(iii) Suppose ann(I) = 〈pi〉 for some i. By Remark 3.1, degAG(Zn)(〈pi〉) =

1 and so 〈pi〉 is only adjacent to
〈

n
pi

〉

in AG(Zn). Thus ann(〈pi〉) =
〈

n
pi

〉

= I

for some i.
(iii)⇒(iv) If ann(〈pi〉) = I for some i, then ann(pi) = I. By Theorem 1.3, I∗

is a cut set of Γ(Zn).
(iv)⇒(i) Suppose I∗ is a cut set of Γ(Zn). Then by Theorem 1.3, I∗ = ann∗(pi)

for some i. Since ann(pi) = ann(〈pi〉), I
∗ = ann∗(〈pi〉). Since degAG(Zn)(〈pi〉) =

1, I =
〈

n
pi

〉

and so I is a cut vertex of AG(Zn).

Theorem 3.3. Let R =
∏n

i=1 Ri be a finite commutative non-local ring, where

each (Ri,mi) is a local ring and n ≥ 2. Let ni be the nilpotency of mi. If

I =
∏n

i=1 Ii is a cut vertex of AG(R), then I = (0)×· · ·×(0)×m
ni−1
i ×(0)×· · ·×(0)

for some i, 1 ≤ i ≤ n.

Proof. Note thatMax(R) = {Mi : Mi = R1×· · ·×Ri−1×mi×Ri+1×· · ·×Rn, 1 ≤
i ≤ n} is the set of all maximal ideals in R. Since I is a cut vertex of AG(R)
and by Proposition 2.2, ann(I) is a maximal ideal in R and so ann(I) = Mi for
some i. Thus Ii 6= (0), Iimi = (0) and Ij = (0) for all j 6= i. Clearly IiKi = (0)
for every non-zero proper ideal Ki in Ri.

Let Ω = {R1 × · · ·×Ri−1×Ki×Ri+1× · · ·×Rn : Ki is a proper ideal in Ri}.
Then IK = (0) for all K ∈ Ω. Suppose that I ′i is any non-zero ideal in Ri with
I ′i 6= Ii, I

′
imi = (0) and A = (0)×· · ·×(0)×I ′i×(0)×· · ·×(0) 6= I, then AK = (0)
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for all K ∈ Ω and so I is not a cut vertex of AG(R), a contradiction. Thus there
exist no non-zero proper ideal I ′i in Ri such that I ′i 6= Ii and miI

′
i = (0). From

this, Ii is the only element adjacent to mi in AG(Ri) and so degAG(Ri)(mi) = 1.

Since mni−1
i mi = (0), Ii = m

ni−1
i . Hence I = (0)×· · ·×(0)×m

ni−1
i ×(0)×· · ·×(0).

In view of Theorem 3.3, we have the following corollary.

Corollary 3. Let R =
∏n

i=1 Ri be a finite commutative non-local ring, where

each (Ri,mi) is a local ring and n ≥ 2. If I is a cut vertex of AG(R), then

I = ann(M) for some maximal ideal M in R.

Theorem 3.4. Let R =
∏n

i=1 Ri be a finite commutative non-local ring, where

each (Ri,mi) is a local ring and n ≥ 2. Let ni be the nilpotency of mi. Then

AG(R) has a cut vertex if and only if AG(Ri) has a cut vertex for some i.

Proof. Note thatMax(R) = {Mi : Mi = R1×· · ·×Ri−1×mi×Ri+1×· · ·×Rn, 1 ≤
i ≤ n} is the set of all maximal ideals in R. Let I be a cut vertex of AG(Ri) for
some i. By Proposition 2.4, I = m

ni−1
i . By Corollary 1, degAG(Ri)(mi) = 1. Thus

degAG(R)(Mi) = 1 where Mi ∈ Max(R) and MiI = (0) where I = (0) × · · · ×

(0) × m
ni−1
i × (0) × · · · × (0). Thus (0) × · · · × (0) ×m

ni−1
i × (0) × · · · × (0) is a

cut vertex of AG(R).
Conversely, let I ′′ be a cut vertex of AG(R). By Theorem 3.3, I ′′ = (0)×· · ·×

(0) × m
ni−1
i × (0) × · · · × (0) for some i and so mi is only adjacent to m

ni−1
i in

AG(Ri). Hence m
ni−1
i is a cut vertex of AG(Ri).

The converse of the Proposition 2.2 is true in the following theorem.

Theorem 3.5. Let R =
∏n

i=1 Ri be a finite commutative non-local ring, where

each (Ri,mi) is a local ring and n ≥ 2. Let ni be the nilpotency of mi. Suppose

AG(Ri) has a cut vertex for all i, 1 ≤ i ≤ n. Then the following are equivalent:

(i) I is a cut vertex of AG(R),

(ii) ann(I) is a maximal ideal in R,

(iii) I = ann(M) for some M ∈ Max(R).

Proof. By Proposition 2.4, mni−1
i is the unique cut vertex of AG(Ri) for all i.

Therefore degAG(Ri)(mi) = 1 and so degAG(R)(Mi) = 1 for all Mi ∈ Max(R).
(i)⇔(ii) Suppose I is a cut vertex of AG(R). By Proposition 2.2, ann(I) is

maximal. Conversely, assume that ann(I) is maximal ideal in R and ann(I) = Mi

for some Mi ∈ Max(R). Since degAG(R)(Mi) = 1, (0)× · · · × (0)×m
ni−1
i × (0)×

· · · × (0) is the only vertex adjacent to Mi in AG(R). Thus I = (0)× · · · × (0)×
m

ni−1
i × (0)× · · · × (0) is a cut vertex of AG(R).
(i)⇔(iii) Suppose I is a cut vertex of AG(R). By Theorem 3.4, I = (0)×· · ·×

(0)×m
ni−1
i × (0)× · · · × (0). Since degAG(R)(Mi) = 1, ann(Mi) = I. Conversely,
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suppose I = ann(M) for some M ∈ Max(R). Since degAG(R)(M) = 1 for all
M ∈ Max(R), I is a cut vertex of AG(R).

Theorem 3.6. Let R =
∏n

i=1 Ri be a finite commutative non-local ring, where

each (Ri,mi) is a local ring and n ≥ 2. Let ni be the nilpotency of mi. Then for

each i (1 ≤ i ≤ n), Ωi = {(0) × · · · × (0) × Ii × (0) × · · · × (0) : Ii ⊆ ann(mi)} is

a cut set in AG(R) and hence ann(Mi) = Ωi for Mi ∈ Max(R).

Proof. Let Ω′
i = {R1×· · ·×Ri−1×Ki×Ri+1×· · ·×Rn : Ki is a proper ideal inRi}

for 1 ≤ i ≤ n. Then for any I ′ ∈ Ω′
i, I

′I = (0) for all I ∈ Ωi. When Ωi is removed
in AG(R), AG(R)rΩi is disconnected, since Ω′

i is isolated in AG(R)rΩi. Also,
no proper subset of Ωi is a cut set of AG(R). Hence Ωi is a cut set in AG(R).

Theorem 3.7. Let R =
∏n

i=1 Ri be a finite commutative non-local ring, where

each (Ri,mi) is a local ring and n ≥ 2. Let ni be the nilpotency of mi. Then

κ(AG(R)) = κ′(AG(R)) = min
1≤i≤n

degAG(Ri)(mi) = δ(AG(R)).

Proof. Note that Max(R) = {Mi : Mi = R1 × · · · × Ri−1 × mi × Ri+1 × · · · ×
Rn, 1 ≤ i ≤ n} is the set of all maximal ideals in R. Clearly NAG(R)(Mi) =
{(0)× · · · × (0)× Ii × (0)× · · · × (0) : Iimi = (0), Ii is a non-zero ideal in Ri} and
hence degAG(R)(Mi) = degAG(Ri)(mi) for 1 ≤ i ≤ n.

Let I =
∏n

i=1 Ii be any non-zero proper ideal in R, but not maximal, where
each Ii is an ideal in Ri. Then I ⊂ Mi for some i. Clearly Ii ⊆ mi, Ij ⊂ Rj for
some j 6= i and so degAG(R)(Mi) < degAG(R)(I). Hence, for each maximal ideal
M in R, degAG(R)(M) < degAG(R)(I) for all non-zero proper ideal I in R and I
is not maximal.

Let ti = degAG(R)(Mi) with t1 ≤ t2 ≤ · · · ≤ tn. Then δ(AG(R)) = min1≤i≤n{ti} =
t1. By Theorem 3.6, ann(Mi) is a cut set of AG(R) for all i. Thus ann(M1) is
a cut set of AG(R) with minimum cardinality and so κ(AG(R)) = t1. Let Ω be
the set of all edges incident with M1 in AG(R). Then Ω is an edge cut of AG(R)
with minimum cardinality. Hence κ′(AG(R)) = t1.

Theorem 3.8. Let R =
∏n

i=1 Ri be a commutative ring, where each Ri is a field

and n ≥ 2. Let I be any non-zero ideal in R. Then the following are equivalent:

(i) I is a cut vertex of AG(R),

(ii) ann(I) is a maximal ideal in R,

(iii) I = ann(M) for some maximal ideal M in R,

(iv) I∗ is a cut vertex of Γ(R).
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Proof. Note that Max(R) = {M ′
i = R1 × · · · × Ri−1 × (0) × Ri+1 × · · · × Rn :

1 ≤ i ≤ n} is the set of maximal ideals in R and degAG(R)(M
′
i) = 1 for all i. Let

Di = (0)× · · · × (0)×Ri × (0) × · · · × (0), for 1 ≤ i ≤ n.
(i)⇔(ii) Suppose I is a cut vertex of AG(R). By Proposition 2.2, ann(I) is

a maximal ideal in R. Conversely, assume that ann(I) is maximal ideal in R.
Then ann(I) = M ′

i for some i. Since degAG(R)(M
′
i) = 1, M ′

i is only adjacent to
Di in AG(R). Thus I = Di and so I is a cut vertex of AG(R).

(i)⇔(iii) Suppose I is a cut vertex of AG(R). By (ii), ann(I) = Mi for some
i and so I = Di. Thus ann(Mi) = Di = I. Conversely, let I = ann(M) for some
maximal ideal M in R. Since degAG(R)(M) = 1, I is a cut vertex of AG(R).

(i)⇔(iv) Suppose I is a cut vertex of AG(R). Then I = Di for some i and so
I∗ = {(0, . . . , 0, x, 0, . . . , 0) : 0 6= x ∈ Ri}. When I∗ is removed in Γ(R), Γ(R) r
{I∗} is disconnected, since (1, . . . , 1, 0, 1, . . . , 1) is isolated in Γ(R)r{I∗}. Also no
proper subset of I∗ is a cut set of Γ(R). Hence I∗ is a cut set Γ(R). Conversely,
suppose I∗ is a cut set of Γ(R). By Theorem 1.5, I = {(0, . . . , 0, x, 0, . . . , 0) : x ∈
Ri} = (0)× · · · × (0)×Ri × (0)× · · · × (0). Hence I is a cut vertex of AG(R).
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