
Discussiones Mathematicae
General Algebra and Applications 35 (2015) 139–157
doi:10.7151/dmgaa.1237

ON A PERIODIC PART OF PSEUDO-BCI-ALGEBRAS

Grzegorz Dymek

Institute of Mathematics and Computer Science

The John Paul II Catholic University of Lublin

Konstantynów 1H, 20–708 Lublin, Poland

e-mail: gdymek@o2.pl

Abstract

In the paper the connections between the set of some maximal elements
of a pseudo-BCI-algebra and deductive systems are established. Using these
facts, a periodic part of a pseudo-BCI-algebra is studied.
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1. Introduction

Among many algebras of logic, BCI-algebras, introduced in [8], form an important
and interesting class of algebras. They have connections with BCI-logic being
the BCI-system in combinatory logic, which has application in the language of
functional programming.

The notion of pseudo-BCI-algebras has been introduced in [1] as an extension
of BCI-algebras. Pseudo-BCI-algebras are algebraic models of some extension of a
non-commutative version of the BCI-logic. These algebras have also connections
with other algebras of logic such as pseudo-BCK-algebras, pseudo-BL-algebras
and pseudo-MV-algebras. More about those algebras a reader can find in [7].

The paper is devoted to pseudo-BCI-algebras. In Section 2, we give some
necessary material needed in the sequel. In Section 3, first we investigate the p-
semisimple part M(X) of a pseudo-BCI-algebra X and give conditions for M(X)
to be a deductive system of X. For D ⊆ X, the set M(D) = {(x → 1) → 1 : x ∈
D} is also investigated. We end this section by giving some facts about deductive
systems of a pseudo-BCI-algebra. Finally, using the results of Section 3, we study
a periodic part of a pseudo-BCI-algebra in Section 4.

http://dx.doi.org/10.7151/dmgaa.1237
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2. Preliminaries

A pseudo-BCI-algebra is a structure (X;≤,→, , 1), where ≤ is a binary relation
on a set X, → and  are binary operations on X and 1 is an element of X such
that for all x, y, z ∈ X, we have

(a1) x → y ≤ (y → z) (x → z), x y ≤ (y  z) → (x z),

(a2) x ≤ (x → y) y, x ≤ (x y) → y,

(a3) x ≤ x,

(a4) if x ≤ y and y ≤ x, then x = y,

(a5) x ≤ y iff x → y = 1 iff x y = 1.

It is obvious that any pseudo-BCI-algebra (X;≤,→, , 1) can be regarded as
an algebra (X;→, , 1) of type (2, 2, 0). Note that every pseudo-BCI-algebra
satisfying x → y = x y for all x, y ∈ X is a BCI-algebra.

Every pseudo-BCI-algebra satisfying x ≤ 1 for all x ∈ X is a pseudo-BCK-
algebra. A pseudo-BCI-algebra which is not a pseudo-BCK-algebra will be called
proper.

Troughout this paper, we will often use X to denote a pseudo-BCI-algebra.
Any pseudo-BCI-algebra X satisfies the following, for all x, y, z ∈ X:

(b1) if 1 ≤ x, then x = 1,

(b2) if x ≤ y, then y → z ≤ x → z and y  z ≤ x z,

(b3) if x ≤ y and y ≤ z, then x ≤ z,

(b4) x → (y  z) = y  (x → z),

(b5) x ≤ y → z iff y ≤ x z,

(b6) x → y ≤ (z → x) → (z → y), x y ≤ (z  x) (z  y),

(b7) if x ≤ y, then z → x ≤ z → y and z  x ≤ z  y,

(b8) 1 → x = 1 x = x,

(b9) ((x → y) y) → y = x → y, ((x y) → y) y = x y,

(b10) x → y ≤ (y → x) 1, x y ≤ (y  x) → 1,

(b11) (x → y) → 1 = (x → 1) (y  1), (x y) 1 = (x 1) → (y → 1),

(b12) x → 1 = x 1.
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If (X;≤,→, , 1) is a pseudo-BCI-algebra, then, by (a3), (a4), (b3) and (b1),
(X;≤) is a poset with 1 as a maximal element. Note that a pseudo-BCI-algebra
has also other maximal elements.

Example 2.1 [3]. Let X = {a, b, c, d, 1} and define binary operations → and  
on X by the following tables:

→ a b c d 1

a 1 1 1 d 1
b b 1 1 d 1
c b b 1 d 1
d d d d 1 d
1 a b c d 1

 a b c d 1

a 1 1 1 d 1
b c 1 1 d 1
c a b 1 d 1
d d d d 1 d
1 a b c d 1

Then (X;→, , 1) is a (proper) pseudo-BCI-algebra. Observe that it is not a
pseudo-BCK-algebra because d � 1.

Example 2.2 [9]. Let Y1 = (−∞, 0] and let ≤ be the usual order on Y1. Define
binary operations → and  on Y1 by

x → y =

{

0 if x ≤ y,
2y
π

arctan(ln( y
x
)) if y < x,

x y =

{

0 if x ≤ y,

ye− tan(πx
2y

) if y < x

for all x, y ∈ Y1. Then (Y1;≤,→, , 0) is a pseudo-BCK-algebra, and hence it is
a nonproper pseudo-BCI-algebra.

Example 2.3 [6]. Let Y2 = R2 and define binary operations → and  and a
binary relation ≤ on Y2 by

(x1, y1) → (x2, y2) = (x2 − x1, (y2 − y1)e
−x1),

(x1, y1) (x2, y2) = (x2 − x1, y2 − y1e
x2−x1),

(x1, y1) ≤ (x2, y2) ⇔ (x1, y1) → (x2, y2) = (0, 0) = (x1, y1) (x2, y2)

for all (x1, y1), (x2, y2) ∈ Y2. Then (Y2;≤,→, , (0, 0)) is a proper pseudo-BCI-
algebra. Notice that Y2 is not a pseudo-BCK-algebra because there exists (x, y) =
(1, 1) ∈ Y2 such that (x, y) � (0, 0).

Example 2.4 [6]. Let Y be the direct product of pseudo-BCI-algebras Y1 and Y2

from Examples 2.2 and 2.3, respectively. Then Y is a proper pseudo-BCI-algebra,
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where Y = (−∞, 0] ×R2 and binary operations → and  and binary relation ≤
are defined on Y by

(x1, y1, z1) → (x2, y2, z2) =
{

(0, y2 − y1, (z2 − z1)e
−y1) if x1 ≤ x2,

(2x2

π
arctan(ln(x2

x1
)), y2 − y1, (z2 − z1)e−y1) if x2 < x1,

(x1, y1, z1) (x2, y2, z2) =
{

(0, y2 − y1, z2 − z1e
y2−y1) if x1 ≤ x2,

(x2e
− tan(

πx1
2x2

)
, y2 − y1, z2 − z1e

y2−y1) if x2 < x1,

(x1, y1, z1) ≤ (x2, y2, z2) ⇔ x1 ≤ x2 and y1 = y2 and z1 = z2.

Notice that Y is not a pseudo-BCK-algebra because there exists (x, y, z) =
(0, 1, 1) ∈ Y such that (x, y, z) � (0, 0, 0).

For any pseudo-BCI-algebra (X;→, , 1), the set

K(X) = {x ∈ X : x ≤ 1}

is a subalgebra of X (called pseudo-BCK-part of X). Then (K(X);→, , 1) is
a pseudo-BCK-algebra. Note that a pseudo-BCI-algebra X is a pseudo-BCK-
algebra if and only if X = K(X).

It is easily seen that for the pseudo-BCI-algebras X, Y1, Y2 and Y from Ex-
amples 2.1, 2.2, 2.3 and 2.4 we have K(X) = {a, b, c, 1}, K(Y1) = Y1, K(Y2) =
{(0, 0)} and K(Y ) = {(x, 0, 0) : x ≤ 0}, respectively.

We will denote by M(X) the set of all maximal elements of X and call it the
p-semisimple part of X. Obviously, 1 ∈ M(X). Notice that M(X)∩K(X) = {1}.
Indeed, if a ∈ M(X)∩K(X), then a ≤ 1 and a is a maximal element of X, which
means that a = 1. Moreover, observe that 1 is the only maximal element of a
pseudo-BCK-algebra. Therefore, for a pseudo-BCK-algebra X, M(X) = {1}. In
[2] and [6] there is shown that M(X) = {x ∈ X : x = (x → 1) → 1} and it is a
subalgebra of X.

Observe that for the pseudo-BCI-algebras X, Y1, Y2 and Y from Examples
2.1, 2.2, 2.3 and 2.4 we have M(X) = {d, 1}, M(Y1) = {0}, M(Y2) = Y2 and
M(Y ) = {(0, y, z) : y, z ∈ R}, respectively.

Let X be a pseudo-BCI-algebra. For any a ∈ X, we define a subset V (a) of
X as follows

V (a) = {x ∈ X : x ≤ a}.

Note that V (a) is non-empty, because a ≤ a gives a ∈ V (a). Notice also that
V (a) ⊆ V (b) for any a, b ∈ X such that a ≤ b.
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If a ∈ M(X), then the set V (a) is called a branch of X determined by element a.
The following facts are proved in [6]: (1) branches determined by different ele-
ments are disjoint, (2) a pseudo-BCI-algebra is a set-theoretic union of branches,
(3) comparable elements are in the same branch.

The pseudo-BCI-algebra Y1 from Example 2.2 has only one branch (as the
pseudo-BCK-algebra) and the pseudo-BCI-algebra X from Example 2.1 has two
branches: V (d) = {d} and V (1) = {a, b, c, 1}. Every {(x, y)} is a branch of the
pseudo-BCI-algebra Y2 from Example 2.3, where (x, y) ∈ Y2. For the pseudo-BCI-
algebra Y from Example 2.4, the sets V ((0, a1, a2)) = {(x, a1, a2) ∈ Y : x ≤ 0},
where (0, a1, a2) ∈ M(X), are branches of Y .

Proposition 2.5 [2]. Let X be a pseudo-BCI-algebra. For all a, x, y ∈ X, the

following are equivalent:

(i) a ∈ M(X),

(ii) (a → x) x = a = (a x) → x.

Proposition 2.6 [2]. Let X be a pseudo-BCI-algebra and let x ∈ X and a, b ∈
M(X). If x ∈ V (a), then x → b = a → b and x b = a b.

Proposition 2.7 [2]. Let X be a pseudo-BCI-algebra and let x, y ∈ X and a, b ∈
M(X). If x ∈ V (a) and y ∈ V (b), then x → y ∈ V (a → b) and x  y ∈ V (a  
b).

Proposition 2.8 [5]. Let X be a pseudo-BCI-algebra and let x, y ∈ X. The

following are equivalent:

(i) x and y belong to the same branch of X,

(ii) x → y ∈ K(X),

(iii) x y ∈ K(X),

(iv) x → 1 = x 1 = y → 1 = y  1.

Let (X;→, , 1) be a pseudo-BCI-algebra. Then X is p-semisimple if it satisfies
for all x ∈ X,

if x ≤ 1, then x = 1.

Note that if X is a p-semisimple pseudo-BCI-algebra, then K(X) = {1}. Hence,
if X is a p-semisimple pseudo-BCK-algebra, then X = {1}. Moreover, as it is
proved in [6], M(X) is a p-semisimple pseudo-BCI-subalgebra of X and X is
p-semisimple if and only if X = M(X).

It is not difficult to see that the pseudo-BCI-algebras X, Y1 and Y from
Examples 2.1, 2.2 and 2.4, respectively, are not p-semisimple, and the pseudo-
BCI-algebra Y2 from Example 2.3 is a p-semisimple algebra.
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Proposition 2.9 [6]. Let X be a pseudo-BCI-algebra. Then, for all a, b, x, y ∈ X,

the following are equivalent:

(i) X is p-semisimple,

(ii) (x → y) y = x = (x y) → y,

(iii) (x → 1) 1 = x = (x 1) → 1,

(iv) (x → 1) y = (y  1) → x.

Proposition 2.10 [6]. A pseudo-BCI-algebra (X;→, , 1) is p-semisimple if and

only if (X; ·,−1 , 1) is a group, where, for any x, y ∈ X, x · y = (x → 1)  y =
(y  1) → x, x−1 = x → 1 = x 1, x → y = y · x−1 and x y = x−1 · y.

3. Deductive systems

We say that a subset D of a pseudo-BCI-algebra X is a deductive system of X if
it satisfies: (i) 1 ∈ D, (ii) for all x, y ∈ X, if x ∈ D and x → y ∈ D, then y ∈ D.
Under this definition, {1} and X are the simplest examples of deductive systems.
Note that the condition (ii) can be replaced by (ii’) for all x, y ∈ X, if x ∈ D and
x  y ∈ D, then y ∈ D. It can be easily proved that for any x, y ∈ X, if x ∈ D
and x ≤ y, then y ∈ D.

A deductive system D of a pseudo-BCI-algebra X is called: (1) proper if
D 6= X and (2) closed if D is closed under operations → and  , that is, if D is a
subalgebra of X. It is not difficult to show (see [2]) that a deductive system D of a
pseudo-BCI-algebra X is closed if and only if for any x ∈ D, x → 1 = x 1 ∈ D.
Obviously, the pseudo-BCK-part K(X) is a closed deductive system of X.

A deductive system D of a pseudo-BCI-algebra X is called compatible if for
all x, y ∈ X,

x → y ∈ D iff x y ∈ D.

Further, if D is a compatible deductive system of X, then the relation θD defined
by

(x, y) ∈ θD iff x → y ∈ D and y → x ∈ D (1)

is a congruence, where [1]θD ⊆ D is a closed compatible deductive system of X.
Moreover, [1]θD = D if and only if D is closed.

We say that θ ∈ Con(X) is a relative congruence of X if the quotient algebra
(X/θ;→, , [1]θ) is a pseudo-BCI-algebra. It is proved in [3] that relative con-
gruences of X correspond one-to-one to closed compatible deductive systems of
X, that is, every relative congruence of X is given by (1) for some closed compat-
ible deductive system D. For every relative congruence θD, the quotient algebra
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(X/θD;→, , [1]θD ) will be usually denoted by (X/D;→, , [1]D) and then we
will write [x]D instead of [x]θD .

Remark. Although the set M(X) is a subalgebra of a pseudo-BCI-algebra X, it
does not have to be a deductive system of X. Let X be the pseudo-BCI-algebra
from Example 2.1. It is easy to see that M(X) = {d, 1} is not a deductive system
of X.

From [2] we have the following.

Proposition 3.1. Let X be a pseudo-BCI-algebra. The following are equivalent:

(i) M(X) is a deductive system of X,

(ii) for all x, y ∈ X and a ∈ M(X), a → x = a → y implies x = y,

(iii) for all x, y ∈ X and a ∈ M(X), a x = a y implies x = y.

Here we have the following theorem.

Theorem 3.2. Let X be a pseudo-BCI-algebra. The following are equivalent:

(i) M(X) is a deductive system of X,

(ii) x = (a → 1) → (a → x) for all x ∈ X and a ∈ M(X),

(iii) x = (a 1) (a x) for all x ∈ X and a ∈ M(X).

Proof. (i) ⇒ (ii): Assume that M(X) is a deductive system of X. Let x ∈ X
and a ∈ M(X). Then, by (b4) and Proposition 2.5, we have

a → (((a → 1) → (a → x)) x) = ((a → 1) → (a → x)) (a → x) = a → 1.

Hence, by Proposition 3.1, ((a → 1) → (a → x)) x = 1, that is,

(a → 1) → (a → x) ≤ x.

On the other hand, again by (b4),

x ((a → 1) → (a → x)) = (a → 1) → (a → (x x))

= (a → 1) → (a → 1)

= 1,

that is,
x ≤ (a → 1) → (a → x).

Hence, x = (a → 1) → (a → x) and (ii) is satisfied.
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(ii) ⇒ (i): Assume that (ii) is satisfied. We use Proposition 3.1. Let x, y ∈ X
and a ∈ M(X). Suppose that a → x = a → y. Then, by (ii), we get

x = (a → 1) → (a → x) = (a → 1) → (a → y) = y.

Therefore, by Proposition 3.1, M(X) is a deductive system of X.
(i) ⇔ (iii): Analogous.

Remark. From [3] we know that K(X) is a closed compatible deductive system
of a pseudo-BCI-algebra X and X/K(X) ∼= M(X). We also have the following
proposition.

Proposition 3.3. Let X be a pseudo-BCI-algebra. If M(X) is a compatible

deductive system of X, then X/M(X) ∼= K(X). Moreover, [x]M(X) 6= [y]M(X)

for all x, y ∈ V (a) such that x 6= y, where a ∈ M(X).

Proof. Since M(X) is a (closed) compatible deductive system of X, we have
X/M(X) is a pseudo-BCI-algebra. Define a function f : K(X) → X/M(X) as
follows:

f(x) = [x]M(X) for all x ∈ K(X).

Since

f(x → y) = [x → y]M(X) = [x]M(X) → [y]M(X) = f(x) → f(y)

and
f(x y) = [x y]M(X) = [x]M(X)  [y]M(X) = f(x) f(y),

so f is a homomorphism. Take x, y ∈ K(X) such that x 6= y. Then x → y 6= 1
or y → x 6= 1. Hence, x → y /∈ M(X) or y → x /∈ M(X), that is, [x]M(X) 6=
[y]M(X). Thus, f is injective. Now, take x ∈ X and a = (x → 1) → 1. Then
a ∈ M(X) and x ∈ V (a). Hence, by Proposition 2.8, a → x ∈ K(X). Thus,
since [a]M(X) = [1]M(X), we have

f(a → x) = [a → x]M(X)

= [a]M(X) → [x]M(X)

= [1]M(X) → [x]M(X)

= [x]M(X).

Hence f is also surjective. Therefore f is an isomorphism, that is, X/M(X) ∼=
K(X).

Finally, let a ∈ M(X), x, y ∈ V (a) and x 6= y. Then, x → y, y → x ∈ K(X).
If [x]M(X) = [y]M(X), then x → y ∈ M(X) and y → x ∈ M(X). Hence,
x → y = 1 and y → x = 1, that is, x = y and we get a contradiction. Thus,
[x]M(X) 6= [y]M(X).
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Theorem 3.4. Let X be a pseudo-BCI-algebra. Then X ∼= K(X) × M(X) if

and only if M(X) is a compatible deductive system of X.

Proof. Assume that X ∼= K(X) × M(X). Let f : X → K(X) × M(X) be
an isomorphism. Let πK and πM be projection maps onto K(X) and M(X),
respectively. Denote

fK = πK ◦ f : X → K(X)

and

fM = πM ◦ f : X → M(X).

Obviously, fK and fM are both homomorphisms. The following are easy to show:

(i) f(x) = (fK(x), fM (x)) for all x ∈ X,

(ii) fK(x) = 1 for all x ∈ M(X),

(iii) fM(x) = 1 for all x ∈ K(X),

(iv) if x and y are in the same branch V (a), then fM(x) = fM (y) = a,

(v) if x and y are in the same branch and x 6= y, then fK(x) 6= fK(y).

Now, by (ii) and (v), it follows that M(X) = ker(fK), that is, it is a (closed)
compatible deductive system of X.

Conversely, assume that M(X) is a compatible deductive system of X. Ob-
viously, it is closed. Hence X/M(X) is a pseudo-BCI-algebra. From Proposi-
tion 3.3, we know that X/M(X) ∼= K(X). Since also X/K(X) ∼= M(X), it
suffices to show that X ∼= X/M(X) × X/K(X). Define a function g : X →
X/M(X) ×X/K(X) as follows:

g(x) = ([x]M(X), [x]K(X)) for all x ∈ X.

Obviously, g is a homomorphism. First, we prove that it is injective. Let
x, y ∈ X and g(x) = g(y). Then, ([x]M(X), [x]K(X)) = ([y]M(X), [y]K(X)), whence
[x]M(X) = [y]M(X) and [x]K(X) = [y]K(X). Hence, x → y, y → x ∈ M(X) and
x → y, y → x ∈ K(X). These are possible only in case x → y = y → x = 1.
Thus, x = y and g is injective.

Next, we show that g is surjective. Let ([x]M(X), [y]K(X)) ∈ X/M(X) ×
X/K(X). Denote a = (x → 1) → 1 and b = (y → 1) → 1. Then, a, b ∈ M(X).
Since (a → x)  x = a ∈ M(X) and x  (a → x) = a → 1 ∈ M(X), we
have [x]M(X) = [a → x]M(X). Moreover, since y ∈ V (b), by Proposition 2.8,
b → y, y → b ∈ K(X). Hence, [y]K(X) = [b]K(X). Thus,

([x]M(X), [y]K(X)) = ([a → x]M(X), [b]K(X)).
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Let z = (b → 1) → (a → x). We have a → x ∈ K(X) by Proposition 2.8,
and z ∈ V ((b → 1) → 1) = V (b) by Proposition 2.7, whence [z]K(X) = [b]K(X).
Moreover, by (b4) and Proposition 2.5, we have

(a → x) z = (a → x) ((b → 1) → (a → x)) = (b → 1) → 1 = b ∈ M(X)

and

z  (a → x) = ((b → 1) → (a → x)) (a → x) = b → 1 ∈ M(X).

Hence, [z]M(X) = [a → x]M(X). Thus,

g(z) = ([z]M(X), [z]K(X)) = ([a → x]M(X), [b]K(X)) = ([x]M(X), [y]K(X)).

Hence, g is surjective.
Therefore, g is an isomorphism, that is, X ∼= X/M(X) ×X/K(X) ∼= K(X)×

M(X).

Remark. It is easy to see that for the pseudo-BCI-algebra X from Example 2.1,
M(X) is not a (compatible) deductive system of X and X ≇ K(X)×M(X), and
for the pseudo-BCI-algebra Y from Example 2.4, M(Y ) is a compatible deductive
system of Y and Y ∼= K(Y ) ×M(Y ).

For any non-empty subset A of a pseudo-BCI-algebra X, denote

M(A) = {(x → 1) → 1 : x ∈ A}.

Obviously, M(A) ⊆ M(X) and A ∩M(X) ⊆ M(A).

Proposition 3.5. Let X be a pseudo-BCI-algebra and D be a deductive system

of X. Then

(i) M(D) = D ∩M(X),

(ii) M(D) is a deductive system of M(X).

Proof. (i) It suffices to prove that M(D) ⊆ D∩M(X). Let x ∈ D. Then, by (a2),
(x → 1) → 1 ∈ D. Thus, (x → 1) → 1 ∈ D∩M(X), that is, M(D) = D∩M(X).

(ii) Obviously, 1 ∈ M(D). Let x, y ∈ M(X) be such that x ∈ M(D) and
x → y ∈ M(D). Then, we have x, x → y ∈ D and x, x → y ∈ M(X). Hence,
since D is a deductive system of X, y ∈ D ∩M(X) = M(D). Therefore, M(D)
is a deductive system of X.

Remark. If M(D) is a deductive system of M(X), then D does not have to be
a deductive system of X. Let X be the pseudo-BCI-algebra from Example 2.1.
Then, for D = {a, 1}, M(D) = {1} is a deductive system of M(X), but D is not
a deductive system of X.

From [2] we have the following fact.
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Proposition 3.6. Let X be a pseudo-BCI-algebra. If D is a subalgebra of X,

then M(D) is a closed deductive system of M(X).

Remark. If M(D) is a closed deductive system of M(X), then D does not have
to be a subalgebra of X. Let X be the pseudo-BCI-algebra from Example 2.1.
Then for D = {a, b, 1} we have M(D) = {1} is a closed deductive system of
M(X), but D is not a subalgebra of X.

Proposition 3.7. Let X be a pseudo-BCI-algebra. A deductive system D of X
is closed if and only if a deductive system M(D) is closed in M(X).

Proof. By Proposition 3.6, it suffices to prove that if M(D) is closed in M(X),
then D is closed in X. Assume that a deductive system M(D) is closed in
M(X). Let x ∈ D. Then, (x → 1) → 1 ∈ M(D). Hence, using (b9) and (b12),
x → 1 = ((x → 1) → 1) → 1 ∈ M(D). By Proposition 3.5(i), x → 1 ∈ D, that
is, D is closed.

Moreover, it is not difficult to show the following.

Proposition 3.8. Let X be a pseudo-BCI-algebra. If D is a compatible deductive

system of X, then M(D) is a compatible deductive system of M(X).

Remark. The converse of Proposition 3.8 does not hold. Let X be the pseudo-
BCI-algebra from Example 2.1. Then, for D = {c, 1}, M(D) = {1} is a compat-
ible deductive system of M(X), but D is a deductive system of X which is not
compatible.

Theorem 3.9. Let X be a pseudo-BCI-algebra and A ⊆ M(X). Then, D =
⋃

a∈A V (a) is a subalgebra of X if and only if A is a subalgebra of M(X).

Proof. Assume that D is a subalgebra of X. Let a, b ∈ A. Then, V (a), V (b) ⊆ D,
that is, a → b, a  b ∈ D. Since a → b and a  b are maximal elements of X,
V (a → b), V (a b) ⊆ D, that is, a → b, a b ∈ A. Therefore, A is a subalgebra
of M(X).

Conversely, assume that A is a subalgebra of M(X). Let x, y ∈ D. Then,
there are a, b ∈ A such that x ∈ V (a), y ∈ V (b) and a → b, a  b ∈ A. By
Proposition 2.7, x → y ∈ V (a → b) ⊆ D and x y ∈ V (a b) ⊆ D. Therefore,
D is a subalgebra of X.

Theorem 3.10. Let X be a pseudo-BCI-algebra and A ⊆ M(X). Then, D =
⋃

a∈A V (a) is a deductive system of X if and only if A is a deductive system of

M(X).

Proof. If D is a deductive system of X, then by Proposition 3.5, M(D) =
D ∩M(X) = A is a deductive system of M(X).
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Conversely, assume that A is a deductive system of M(X). Obviously, 1 ∈ D.
Let x, y ∈ X be such that x, x → y ∈ D. Denote a = (x → 1) → 1, b = ((x →
y) → 1) → 1 and c = (y → 1) → 1. It is clear that a, b, c ∈ M(X), x ∈ V (a),
x → y ∈ V (b) and y ∈ V (c). Moreover, by Proposition 2.7, x → y ∈ V (a → c).
Hence, a → c = b ∈ A. Since a ∈ A and A is a deductive system of M(X), we
get c ∈ A. Thus, y ∈ V (c) ⊆ D. Therefore, D is a deductive system of X.

The following fact is proved in [2].

Proposition 3.11. Let X be a p-semisimple pseudo-BCI-algebra and D ⊆ X.

Then, D is a closed deductive system of X if and only if it is a subalgebra of X.

Theorem 3.12. Let (X;→, , 1) be a p-semisimple pseudo-BCI-algebra. Then

the following are equivalent:

(i) D is a closed deductive system of (X;→, , 1),

(ii) D is a subalgebra of (X;→, , 1),

(iii) D is a subgroup of (X; ·,−1 , 1).

Proof. (i)⇔(ii): Follows by Proposition 3.11.
(i)⇒(iii): Assume that D is a closed deductive system. Let x, y ∈ D. Then,

x (x · y) = x−1 · (x · y) = y ∈ D. Hence, x · y ∈ D. Moreover, since D is closed,
x−1 = x → 1 ∈ D for any x ∈ D. Thus, D is a subgroup.

(iii)⇒(i): Assume that D is a subgroup. Obviously, 1 ∈ D. Let x, x → y ∈ D.
Then, y · x−1 ∈ D and so y = (y · x−1) · x ∈ D. Thus, D is a deductive system.
Moreover, x → 1 = x−1 ∈ D for any x ∈ X, that is, D is closed.

Moreover, we have the following simple proposition.

Proposition 3.13. Let (X;→, , 1) be a p-semisimple pseudo-BCI-algebra. The

following are equivalent:

(i) D is a closed compatible deductive system of (X;→, , 1),

(ii) D is a normal subgroup of (X; ·,−1 , 1).

Combining Theorems 3.9, 3.10 and 3.12 we have the following theorem.

Theorem 3.14. Let (X;→, , 1) be a pseudo-BCI-algebra, A ⊆ M(X) and

D =
⋃

a∈A V (a). Then the following are equivalent:

(i) D is a subalgebra of (X;→, , 1),

(ii) A is a subalgebra of (M(X);→, , 1),
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(iii) A is a subgroup of (M(X); ·,−1 , 1)

(iv) A is a closed deductive system of (M(X);→, , 1),

(v) D is a closed deductive system of (X;→, , 1).

4. Periodic part

Troughout this section, we recall some facts from [4] needed in the sequel. Let X
be a pseudo-BCI-algebra. Define

x →0 y = y,

x →n y = x → (x →n−1 y),

where x, y ∈ X and n = 1, 2, . . .. Similarly, we define x  n y for any n =
0, 1, 2, . . ..

Proposition 4.1 [4]. Let X be a pseudo-BCI-algebra. The following hold for

any x, y, z ∈ X and m,n = 0, 1, 2, . . . :

(i) x →n 1 = x n 1,

(ii) x →n x = x →n−1 1, x n x = x n−1 1,

(iii) (x → 1) →n 1 = (x →n 1) → 1, (x 1) n 1 = (x n 1) 1,

(iv) x → (y  n z) = y  n (x → z), x (y →n z) = y →n (x z),

(v) x →m (y  n z) = y  n (x →m z),

(vi) x →n 1 = ((x → 1) → 1) →n 1, x n 1 = ((x 1) 1) n 1.

Lemma 4.2. Let X be a pseudo-BCI-algebra. The following hold for any x, y ∈
X :

(i) x →m+n y = x →m (x →n y) for any m,n = 0, 1, 2, . . .,

(ii) x →mn y = x →m (. . . →m (x →m y) . . .) (n times) for any m = 0, 1, 2, . . .
and n = 1, 2, . . ..

Proof. Routine.

Lemma 4.3. Let X be a pseudo-BCI-algebra. The following hold for any x ∈ X
and m,n = 0, 1, 2, . . . :
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(i) (x →m 1) →n 1 = (x → 1) →mn 1,

(ii) (x m 1) n 1 = (x 1) mn 1.

Proof. (i) We prove it by induction under n. For n = 0 it is obvious. Assume it
for n = k:

(x →m 1) →k 1 = (x → 1) →mk 1.

We have, by assumption and Proposition 4.1(i,iii,v),

(x →m 1) →k+1 1 = (x →m 1) → ((x →m 1) →k 1)

= (x →m 1) → ((x → 1) →mk 1)

= (x →m 1) → ((x → 1) mk 1)

= (x → 1) mk ((x →m 1) → 1)

= (x → 1) mk ((x → 1) →m 1)

= (x → 1) →m ((x → 1) mk 1)

= (x → 1) →m ((x → 1) →mk 1)

= (x → 1) →m(k+1) 1.

So, the equation (i) holds for any n = 0, 1, 2, . . ..
(ii) Follows from (i) and Proposition 4.1(i).

Let X be a pseudo-BCI-algebra. For any x ∈ X, if there exists the least natural
number n such that x →n 1 = 1, then n is called a period of x denoted p(x). If,
for any natural number n, x →n 1 6= 1, then a period of x is called to be infinite
and denoted p(x) = ∞. Obviously, p(1) = 1.

Proposition 4.4 [4]. Let X be a pseudo-BCI-algebra. Then the following hold

for any x, y ∈ X,

(i) p(x) = p(x → 1) = p(x 1),

(ii) if x ≤ y, then p(x) = p(y),

(iii) p(x → y) = p(y → x), p(x y) = p(y  x),

(iv) p(x → y) = p(x y).

Proposition 4.5 [4]. Let (X;→, , 1) be a p-semisimple pseudo-BCI-algebra

and (X; ·,−1 , 1) be a group related with X. Then p(x) = o(x) for any x ∈ X,

where o(x) means an order of an element x in a group (X; ·,−1 , 1).

Proposition 4.6 [4]. Let X be a pseudo-BCI-algebra. Then
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(i) X is a pseudo-BCK-algebra if and only if p(x) = 1 for any x ∈ X,

(ii) X is p-semisimple if and only if p(x) > 1 for any x ∈ X\{1}.

Proposition 4.7. Let X be a pseudo-BCI-algebra and a ∈ M(X). If x ∈ V (a),
then p(x) = p(a).

Proof. Assume that a ∈ M(X) and x ∈ V (a). By Proposition 2.6, x → 1 = a →
1. Hence, by Proposition 4.4(i), we have p(x) = p(x → 1) = p(a → 1) = p(a).

Corollary 4.8. In any pseudo-BCI-algebra, all elements in the same branch have

the same period.

Remark. By Proposition 4.7 we can reduce the study of periods of elements of
a pseudo-BCI-algebra to the study of periods of maximal elements.

Proposition 4.9. Let X be a pseudo-BCI-algebra. If x and y are in the same

branch, then p(x → y) = p(x y) = 1.

Proof. Follows from Propositions 4.4(iv) and 2.8.

Proposition 4.10. Let X be a pseudo-BCI-algebra, x ∈ X, m,n ∈ N and p(x) =
m. Then, x →n 1 = 1 if and only if m|n.

Proof. Let x ∈ X and p(x) = m for some m ∈ N. Assume that x →n 1 = 1 for
some n ∈ N. Suppose that n = mp + r, for some p, r ∈ N and 1 ≤ r < m. Then,
by Lemma 4.2,

1 = x →n 1 = x →mp+r 1 = x →r (x →mp 1)

= x →r (x →m (. . . →m (x →m 1) . . .)) (p times)

= x →r 1.

But, r < m = p(x) which is impossible. Therefore, m|n.
Conversely, assume that m|n, that is, n = mp for some p ∈ N. Then,

by Lemma 4.2(ii), we get x →n 1 = x →mp 1 = x →m (. . . →m (x →m

1) . . .) (p times) = 1.

Let X be a pseudo-BCI-algebra. The set

P (X) = {x ∈ X : p(x) < ∞}

is called a periodic part of X. Moreover, denote

PM (X) = {x ∈ M(X) : p(x) < ∞}.

Obviously, PM (X) ⊆ P (X).
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Proposition 4.11. Let X be a pseudo-BCI-algebra. Then the following hold:

(i) K(X) ⊆ P (X),

(ii) P (X) =
⋃

a∈PM (X) V (a).

Proof. (i) Obvious.
(ii) Follows from Proposition 4.7.

Remark. Note that for the pseudo-BCI-algebra X from Example 2.1, PM (X) =
M(X) and P (X) = X, and for the pseudo-BCI-algebra Y from Example 2.4,
PM (Y ) = {(0, 0, 0)} and P (Y ) = K(Y ).

Remark. It is well known that a torsion part of a non-abelian group does not
have to be a subgroup. Hence, by Theorem 3.12 and Proposition 4.5, PM (X) does
not have to be a closed deductive system of a p-semisimple pseudo-BCI-algebra
X. Thus, by Theorem 3.14 and Proposition 4.11(ii), P (X) does not have to be a
closed deductive system of a pseudo-BCI-algebra X.

The following facts follow from Theorem 3.14 and Propositions 4.4(iv) and 4.11.

Proposition 4.12. Let X be a pseudo-BCI-algebra and let PM (X) be a subalge-

bra of M(X). Then

(i) PM (X) is a closed compatible deductive system of M(X),

(ii) P (X) is a closed compatible deductive system of X.

Let X be a pseudo-BCI-algebra. Denote by D(a) a deductive system of X gen-
erated by {a}, where a ∈ X. From [3] we know that, for any a ∈ X,

D(a) = {1} ∪ {x ∈ X : a →n x = 1 for some n ∈ N}

= {1} ∪ {x ∈ X : a n x = 1 for some n ∈ N}.

Proposition 4.13. Let X be a pseudo-BCI-algebra. Then a deductive system

D(a) is closed for any a ∈ P (X).

Proof. If a ∈ P (X), then there exists k ∈ N such that p(a) = k. Hence,
a →k 1 = 1 ∈ D(a). Moreover, it is not difficult to show that also a → 1, a →2

1, . . . , a →k−1 1 ∈ D(a). Now, let x ∈ D(a). We show that x → 1 ∈ D(a), that
is, D(a) is closed. If x = 1, then the thesis is obvious. Assume that x 6= 1. Then
there exists n ∈ N such that a →n x = 1. Thus, by (b12) and Proposition 4.1(iv),

x → 1 = x 1 = x (a →n x) = a →n (x x) = a →n 1.
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Further, remark that there is l ∈ N such that 0 ≤ l ≤ k − 1 and n = kp + l for
some p ∈ N. Hence, by Lemma 4.2 and the equation a →k 1 = 1 we get

a →n 1 = a →kp+l 1 = a →l (a →kp 1)

= a →l (a →k (. . . →k (a →k 1) . . .)) (p times)

= a →l 1.

Thus,

x → 1 = a →n 1 = a →l 1 ∈ D(a).

Therefore, a deductive system D(a) is closed.

A pseudo-BCI-algebra X is called: (1) periodic if P (X) = X, and (2) aperiodic

if p(x) = ∞ for any x /∈ K(X). Obviously, every pseudo-BCK-algebra is periodic
as well as aperiodic.

Remark. It is not difficult to see that the pseudo-BCI-algebra X from Example
2.1 is periodic, and the pseudo-BCI-algebra Y from Example 2.4 is aperiodic.

Theorem 4.14. Let X be a pseudo-BCI-algebra and let PM (X) be a subalgebra

of M(X). Then X/P (X) is an aperiodic p-semisimple pseudo-BCI-algebra and

X/P (X) ∼= M(X)/PM (X).

Proof. Note that by Proposition 4.12, PM (X) is a closed compatible deductive
system of M(X) and P (X) is a closed compatible deductive system of X. Hence,
M(X)/PM (X) and X/P (X) are both pseudo-BCI-algebras.

First, we show that M(X)/PM (X) is p-semisimple. We will denote by [x]M
PM (X)

for x ∈ M(X) elements of M(X)/PM (X). Assume that [x]M
PM (X) → [1]M

PM (X) =

[1]M
PM (X) for some x ∈ M(X). Then, [x → 1]M

PM (X) = [1]M
PM (X), that is, x → 1 ∈

PM (X). Hence, by Proposition 4.4(i), p(x) = p(x → 1) < ∞, that is, x ∈ PM (X).
Thus, [x]M

PM (X) = [1]M
PM (X). Therefore, a pseudo-BCI-algebra M(X)/PM (X) is

p-semisimple.

Next, we show that X/P (X) and M(X)/PM (X) are isomorphic. Define a
function f : X/P (X) → M(X)/PM (X) as follows:

f([x]P (X)) = [(x → 1) → 1]MPM (X)

for any x ∈ X. Obviously, f is well-defined. We show that it is an isomorphism.
Let x, y ∈ X. By (b11) and (b12), we have
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f([x]P (X) → [y]P (X)) = f([x → y]P (X))

= [((x → y) → 1) → 1]MPM (X)

= [((x → 1) (y → 1)) → 1]MPM (X)

= [((x → 1) → 1) → ((y → 1) → 1)]MPM (X)

= [(x → 1) → 1]MPM (X) → [(y → 1) → 1]MPM (X)

= f([x]P (X)) → f([y]P (X)).

Similarly, f([x]P (X)  [y]P (X)) = f([x]P (X))  f([y]P (X)). Hence, f is a ho-
momorphism. Moreover, since M(X)/PM (X) is p-semisimple, it is easy to see
that f is surjective. Now, let x, y ∈ X be such that [x]P (X) 6= [y]P (X). Then,
x → y /∈ P (X) or y → x /∈ P (X). Assume, for example, that x → y /∈ P (X).
Proof of the case y → x /∈ P (X) is analogous. Since x → y /∈ P (X), by (b11),
(b12) and Proposition 4.4, we have

((x → 1) → 1) → ((y → 1) → 1) = ((x → y) → 1) → 1 /∈ PM (X),

that is,

f([x]P (X)) = [(x → 1) → 1]MPM (X) 6= [(y → 1) → 1]MPM (X) = f([y]P (X)).

Hence, f is injective and so an isomorphism. Thus, we immediately have that
X/P (X) is p-semisimple.

Finally, to prove that X/P (X) is aperiodic, it is sufficient to prove that
M(X)/PM (X) is aperiodic. Since M(X)/PM (X) is p-semisimple, we have to
show that for any x ∈ M(X), [x]M

PM (X) 6= [1]M
PM (X) implies p([x]M

PM (X)) = ∞. As-

sume that there is x ∈ M(X) such that [x]M
PM (X) 6= [1]M

PM (X) and p([x]M
PM (X)) = n

for some n ∈ N. Then,

[x →n 1]MPM (X) = [x]MPM (X) →
n [1]MPM (X) = [1]MPM (X).

Hence, x →n 1 ∈ PM (X), that is, there exists m ∈ N such that p(x →n 1) = m.
Thus, (x →n 1) →m 1 = 1. Hence, by Lemma 4.3(i), (x → 1) →mn 1 = 1, so
p(x → 1) ≤ mn. By Proposition 4.4(i), p(x) ≤ mn, whence x ∈ PM (X). Thus,
[x]M

PM (X) = [1]M
PM (X) and we get a contradiction. Therefore, M(X)/PM (X) is

aperiodic, whence also X/P (X) is aperiodic.

Example 4.15. Let Z be the set of all bijections f : N → N. Define binary
operations → and  on Z by

f → g = g ◦ f−1,

f  g = f−1 ◦ g
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for all f, g ∈ Z. Then the algebra (Z;→, , idN) is a p-semisimple pseudo-BCI-
algebra which is neither periodic nor aperiodic. Moreover, it is not difficult to
see that

P (Z) = PM (Z) = {f ∈ Z : ∃k∈N ∀n≥k f(n) = n}

is a closed compatible deductive system of Z. Hence, by Theorem 4.14, Z/P (Z)
is an aperiodic p-semisimple pseudo-BCI-algebra.
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