ON A PERIODIC PART OF PSEUDO-BCI-ALGEBRAS

Grzegorz Dymek
Institute of Mathematics and Computer Science The John Paul II Catholic University of Lublin
Konstantynów 1H, 20-708 Lublin, Poland
e-mail: gdymek@o2.pl

Abstract

In the paper the connections between the set of some maximal elements of a pseudo-BCI-algebra and deductive systems are established. Using these facts, a periodic part of a pseudo-BCI-algebra is studied.

Keywords: pseudo-BCI-algebra, deductive system, periodic part.
2010 Mathematics Subject Classification: 03G25, 06F35.

1. Introduction

Among many algebras of logic, BCI-algebras, introduced in [8], form an important and interesting class of algebras. They have connections with BCI-logic being the BCI-system in combinatory logic, which has application in the language of functional programming.

The notion of pseudo-BCI-algebras has been introduced in [1] as an extension of BCI-algebras. Pseudo-BCI-algebras are algebraic models of some extension of a non-commutative version of the BCI-logic. These algebras have also connections with other algebras of logic such as pseudo-BCK-algebras, pseudo-BL-algebras and pseudo-MV-algebras. More about those algebras a reader can find in [7].

The paper is devoted to pseudo-BCI-algebras. In Section 2, we give some necessary material needed in the sequel. In Section 3, first we investigate the psemisimple part $M(X)$ of a pseudo-BCI-algebra X and give conditions for $M(X)$ to be a deductive system of X. For $D \subseteq X$, the set $M(D)=\{(x \rightarrow 1) \rightarrow 1: x \in$ $D\}$ is also investigated. We end this section by giving some facts about deductive systems of a pseudo-BCI-algebra. Finally, using the results of Section 3, we study a periodic part of a pseudo-BCI-algebra in Section 4.

2. Preliminaries

A pseudo-BCI-algebra is a structure $(X ; \leq, \rightarrow, \rightsquigarrow, 1)$, where \leq is a binary relation on a set X, \rightarrow and \rightsquigarrow are binary operations on X and 1 is an element of X such that for all $x, y, z \in X$, we have
(a1) $x \rightarrow y \leq(y \rightarrow z) \rightsquigarrow(x \rightarrow z), \quad x \rightsquigarrow y \leq(y \rightsquigarrow z) \rightarrow(x \rightsquigarrow z)$,
(a2) $x \leq(x \rightarrow y) \rightsquigarrow y, \quad x \leq(x \rightsquigarrow y) \rightarrow y$,
(a3) $x \leq x$,
(a4) if $x \leq y$ and $y \leq x$, then $x=y$,
(a5) $x \leq y$ iff $x \rightarrow y=1$ iff $x \rightsquigarrow y=1$.
It is obvious that any pseudo-BCI-algebra $(X ; \leq, \rightarrow, \rightsquigarrow, 1)$ can be regarded as an algebra $(X ; \rightarrow, \rightsquigarrow, 1)$ of type $(2,2,0)$. Note that every pseudo-BCI-algebra satisfying $x \rightarrow y=x \rightsquigarrow y$ for all $x, y \in X$ is a BCI-algebra.

Every pseudo-BCI-algebra satisfying $x \leq 1$ for all $x \in X$ is a pseudo-BCKalgebra. A pseudo-BCI-algebra which is not a pseudo-BCK-algebra will be called proper.

Troughout this paper, we will often use X to denote a pseudo-BCI-algebra. Any pseudo-BCI-algebra X satisfies the following, for all $x, y, z \in X$:
(b1) if $1 \leq x$, then $x=1$,
(b2) if $x \leq y$, then $y \rightarrow z \leq x \rightarrow z$ and $y \rightsquigarrow z \leq x \rightsquigarrow z$,
(b3) if $x \leq y$ and $y \leq z$, then $x \leq z$,
(b4) $x \rightarrow(y \rightsquigarrow z)=y \rightsquigarrow(x \rightarrow z)$,
(b5) $x \leq y \rightarrow z$ iff $y \leq x \rightsquigarrow z$,
(b6) $x \rightarrow y \leq(z \rightarrow x) \rightarrow(z \rightarrow y), \quad x \rightsquigarrow y \leq(z \rightsquigarrow x) \rightsquigarrow(z \rightsquigarrow y)$,
(b7) if $x \leq y$, then $z \rightarrow x \leq z \rightarrow y$ and $z \rightsquigarrow x \leq z \rightsquigarrow y$,
(b8) $1 \rightarrow x=1 \rightsquigarrow x=x$,
$(\mathrm{b} 9) \quad((x \rightarrow y) \rightsquigarrow y) \rightarrow y=x \rightarrow y, \quad((x \rightsquigarrow y) \rightarrow y) \rightsquigarrow y=x \rightsquigarrow y$,
(b10) $x \rightarrow y \leq(y \rightarrow x) \rightsquigarrow 1, \quad x \rightsquigarrow y \leq(y \rightsquigarrow x) \rightarrow 1$,
$(\mathrm{b} 11)(x \rightarrow y) \rightarrow 1=(x \rightarrow 1) \rightsquigarrow(y \rightsquigarrow 1), \quad(x \rightsquigarrow y) \rightsquigarrow 1=(x \rightsquigarrow 1) \rightarrow(y \rightarrow 1)$,
(b12) $x \rightarrow 1=x \rightsquigarrow 1$.

If ($X ; \leq, \rightarrow, \rightsquigarrow, 1$) is a pseudo-BCI-algebra, then, by (a3), (a4), (b3) and (b1), $(X ; \leq)$ is a poset with 1 as a maximal element. Note that a pseudo-BCI-algebra has also other maximal elements.

Example 2.1 [3]. Let $X=\{a, b, c, d, 1\}$ and define binary operations \rightarrow and \rightsquigarrow on X by the following tables:

\rightarrow	a	b	c	d	1
a	1	1	1	d	1
b	b	1	1	d	1
c	b	b	1	d	1
d	d	d	d	1	d
1	a	b	c	d	1

\rightsquigarrow	a	b	c	d	1
a	1	1	1	d	1
b	c	1	1	d	1
c	a	b	1	d	1
d	d	d	d	1	d
1	a	b	c	d	1

Then $(X ; \rightarrow, \rightsquigarrow, 1)$ is a (proper) pseudo-BCI-algebra. Observe that it is not a pseudo-BCK-algebra because $d \not \leq 1$.

Example 2.2 [9]. Let $Y_{1}=(-\infty, 0]$ and let \leq be the usual order on Y_{1}. Define binary operations \rightarrow and \rightsquigarrow on Y_{1} by

$$
\begin{aligned}
& x \rightarrow y= \begin{cases}0 & \text { if } x \leq y, \\
\frac{2 y}{\pi} \arctan \left(\ln \left(\frac{y}{x}\right)\right) & \text { if } \quad y<x,\end{cases} \\
& x \rightsquigarrow y=\left\{\begin{array}{lll}
0 & \text { if } x \leq y, \\
y e^{-\tan \left(\frac{\pi x}{2 y}\right)} & \text { if } & y<x
\end{array}\right.
\end{aligned}
$$

for all $x, y \in Y_{1}$. Then $\left(Y_{1} ; \leq, \rightarrow, \rightsquigarrow, 0\right)$ is a pseudo-BCK-algebra, and hence it is a nonproper pseudo-BCI-algebra.

Example 2.3 [6]. Let $Y_{2}=\mathbb{R}^{2}$ and define binary operations \rightarrow and \rightsquigarrow and a binary relation \leq on Y_{2} by

$$
\begin{aligned}
&\left(x_{1}, y_{1}\right) \rightarrow\left(x_{2}, y_{2}\right)=\left(x_{2}-x_{1},\left(y_{2}-y_{1}\right) e^{-x_{1}}\right), \\
&\left(x_{1}, y_{1}\right) \mapsto\left(x_{2}, y_{2}\right)=\left(x_{2}-x_{1}, y_{2}-y_{1} e^{x_{2}-x_{1}}\right), \\
&\left(x_{1}, y_{1}\right) \leq\left(x_{2}, y_{2}\right) \Leftrightarrow\left(x_{1}, y_{1}\right) \rightarrow\left(x_{2}, y_{2}\right)=(0,0)=\left(x_{1}, y_{1}\right) \rightsquigarrow\left(x_{2}, y_{2}\right)
\end{aligned}
$$

for all $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in Y_{2}$. Then $\left(Y_{2} ; \leq, \rightarrow, \rightsquigarrow,(0,0)\right)$ is a proper pseudo-BCIalgebra. Notice that Y_{2} is not a pseudo-BCK-algebra because there exists $(x, y)=$ $(1,1) \in Y_{2}$ such that $(x, y) \nsubseteq(0,0)$.

Example 2.4 [6]. Let Y be the direct product of pseudo-BCI-algebras Y_{1} and Y_{2} from Examples 2.2 and 2.3, respectively. Then Y is a proper pseudo-BCI-algebra,
where $Y=(-\infty, 0] \times \mathbb{R}^{2}$ and binary operations \rightarrow and \rightsquigarrow and binary relation \leq are defined on Y by

$$
\begin{aligned}
&\left(x_{1}, y_{1}, z_{1}\right) \rightarrow\left(x_{2}, y_{2}, z_{2}\right)= \\
& \begin{cases}\left(0, y_{2}-y_{1},\left(z_{2}-z_{1}\right) e^{-y_{1}}\right) & \text { if } x_{1} \leq x_{2} \\
\left(\frac{2 x_{2}}{\pi} \arctan \left(\ln \left(\frac{x_{2}}{x_{1}}\right)\right), y_{2}-y_{1},\left(z_{2}-z_{1}\right) e^{-y_{1}}\right) & \text { if } x_{2}<x_{1}\end{cases} \\
&\left(x_{1}, y_{1}, z_{1}\right) \rightsquigarrow\left(x_{2}, y_{2}, z_{2}\right)= \\
& \begin{cases}\left(0, y_{2}-y_{1}, z_{2}-z_{1} e^{y_{2}-y_{1}}\right) & \text { if } x_{1} \leq x_{2} \\
\left(x_{2} e^{-\tan \left(\frac{\pi x_{1}}{2 x_{2}}\right)}, y_{2}-y_{1}, z_{2}-z_{1} e^{y_{2}-y_{1}}\right) & \text { if } x_{2}<x_{1}\end{cases} \\
&\left(x_{1}, y_{1}, z_{1}\right) \leq\left(x_{2}, y_{2}, z_{2}\right) \Leftrightarrow x_{1} \leq x_{2} \text { and } y_{1}=y_{2} \text { and } z_{1}=z_{2}
\end{aligned}
$$

Notice that Y is not a pseudo-BCK-algebra because there exists $(x, y, z)=$ $(0,1,1) \in Y$ such that $(x, y, z) \not \leq(0,0,0)$.

For any pseudo-BCI-algebra $(X ; \rightarrow, \rightsquigarrow, 1)$, the set

$$
K(X)=\{x \in X: x \leq 1\}
$$

is a subalgebra of X (called pseudo-BCK-part of X). Then $(K(X) ; \rightarrow, \rightsquigarrow, 1)$ is a pseudo-BCK-algebra. Note that a pseudo-BCI-algebra X is a pseudo-BCKalgebra if and only if $X=K(X)$.

It is easily seen that for the pseudo-BCI-algebras X, Y_{1}, Y_{2} and Y from Examples 2.1, 2.2, 2.3 and 2.4 we have $K(X)=\{a, b, c, 1\}, K\left(Y_{1}\right)=Y_{1}, K\left(Y_{2}\right)=$ $\{(0,0)\}$ and $K(Y)=\{(x, 0,0): x \leq 0\}$, respectively.

We will denote by $M(X)$ the set of all maximal elements of X and call it the p-semisimple part of X. Obviously, $1 \in M(X)$. Notice that $M(X) \cap K(X)=\{1\}$. Indeed, if $a \in M(X) \cap K(X)$, then $a \leq 1$ and a is a maximal element of X, which means that $a=1$. Moreover, observe that 1 is the only maximal element of a pseudo-BCK-algebra. Therefore, for a pseudo-BCK-algebra $X, M(X)=\{1\}$. In [2] and [6] there is shown that $M(X)=\{x \in X: x=(x \rightarrow 1) \rightarrow 1\}$ and it is a subalgebra of X.

Observe that for the pseudo-BCI-algebras X, Y_{1}, Y_{2} and Y from Examples 2.1, 2.2, 2.3 and 2.4 we have $M(X)=\{d, 1\}, M\left(Y_{1}\right)=\{0\}, M\left(Y_{2}\right)=Y_{2}$ and $M(Y)=\{(0, y, z): y, z \in \mathbb{R}\}$, respectively.

Let X be a pseudo-BCI-algebra. For any $a \in X$, we define a subset $V(a)$ of X as follows

$$
V(a)=\{x \in X: x \leq a\}
$$

Note that $V(a)$ is non-empty, because $a \leq a$ gives $a \in V(a)$. Notice also that $V(a) \subseteq V(b)$ for any $a, b \in X$ such that $a \leq b$.

If $a \in M(X)$, then the set $V(a)$ is called a branch of X determined by element a. The following facts are proved in [6]: (1) branches determined by different elements are disjoint, (2) a pseudo-BCI-algebra is a set-theoretic union of branches, (3) comparable elements are in the same branch.

The pseudo-BCI-algebra Y_{1} from Example 2.2 has only one branch (as the pseudo-BCK-algebra) and the pseudo-BCI-algebra X from Example 2.1 has two branches: $V(d)=\{d\}$ and $V(1)=\{a, b, c, 1\}$. Every $\{(x, y)\}$ is a branch of the pseudo-BCI-algebra Y_{2} from Example 2.3, where $(x, y) \in Y_{2}$. For the pseudo-BCIalgebra Y from Example 2.4, the sets $V\left(\left(0, a_{1}, a_{2}\right)\right)=\left\{\left(x, a_{1}, a_{2}\right) \in Y: x \leq 0\right\}$, where $\left(0, a_{1}, a_{2}\right) \in M(X)$, are branches of Y.

Proposition 2.5 [2]. Let X be a pseudo-BCI-algebra. For all $a, x, y \in X$, the following are equivalent:
(i) $a \in M(X)$,
(ii) $(a \rightarrow x) \rightsquigarrow x=a=(a \rightsquigarrow x) \rightarrow x$.

Proposition 2.6 [2]. Let X be a pseudo-BCI-algebra and let $x \in X$ and $a, b \in$ $M(X)$. If $x \in V(a)$, then $x \rightarrow b=a \rightarrow b$ and $x \rightsquigarrow b=a \rightsquigarrow b$.

Proposition 2.7 [2]. Let X be a pseudo-BCI-algebra and let $x, y \in X$ and $a, b \in$ $M(X)$. If $x \in V(a)$ and $y \in V(b)$, then $x \rightarrow y \in V(a \rightarrow b)$ and $x \rightsquigarrow y \in V(a \rightsquigarrow$ b).

Proposition 2.8 [5]. Let X be a pseudo-BCI-algebra and let $x, y \in X$. The following are equivalent:
(i) x and y belong to the same branch of X,
(ii) $x \rightarrow y \in K(X)$,
(iii) $x \rightsquigarrow y \in K(X)$,
(iv) $x \rightarrow 1=x \rightsquigarrow 1=y \rightarrow 1=y \rightsquigarrow 1$.

Let $(X ; \rightarrow, \rightsquigarrow, 1)$ be a pseudo-BCI-algebra. Then X is p-semisimple if it satisfies for all $x \in X$,

$$
\text { if } x \leq 1 \text {, then } x=1 \text {. }
$$

Note that if X is a p-semisimple pseudo-BCI-algebra, then $K(X)=\{1\}$. Hence, if X is a p-semisimple pseudo-BCK-algebra, then $X=\{1\}$. Moreover, as it is proved in [6], $M(X)$ is a p-semisimple pseudo-BCI-subalgebra of X and X is p-semisimple if and only if $X=M(X)$.

It is not difficult to see that the pseudo-BCI-algebras X, Y_{1} and Y from Examples 2.1, 2.2 and 2.4, respectively, are not p-semisimple, and the pseudo-BCI-algebra Y_{2} from Example 2.3 is a p-semisimple algebra.

Proposition 2.9 [6]. Let X be a pseudo-BCI-algebra. Then, for all $a, b, x, y \in X$, the following are equivalent:
(i) X is p-semisimple,
(ii) $(x \rightarrow y) \rightsquigarrow y=x=(x \rightsquigarrow y) \rightarrow y$,
(iii) $(x \rightarrow 1) \rightsquigarrow 1=x=(x \rightsquigarrow 1) \rightarrow 1$,
(iv) $(x \rightarrow 1) \rightsquigarrow y=(y \rightsquigarrow 1) \rightarrow x$.

Proposition 2.10 [6]. A pseudo-BCI-algebra $(X ; \rightarrow, \rightsquigarrow, 1)$ is p-semisimple if and only if $\left(X ; \cdot{ }^{-1}, 1\right)$ is a group, where, for any $x, y \in X, x \cdot y=(x \rightarrow 1) \rightsquigarrow y=$ $(y \rightsquigarrow 1) \rightarrow x, x^{-1}=x \rightarrow 1=x \rightsquigarrow 1, x \rightarrow y=y \cdot x^{-1}$ and $x \rightsquigarrow y=x^{-1} \cdot y$.

3. Deductive systems

We say that a subset D of a pseudo-BCI-algebra X is a deductive system of X if it satisfies: (i) $1 \in D$, (ii) for all $x, y \in X$, if $x \in D$ and $x \rightarrow y \in D$, then $y \in D$. Under this definition, $\{1\}$ and X are the simplest examples of deductive systems. Note that the condition (ii) can be replaced by (ii') for all $x, y \in X$, if $x \in D$ and $x \rightsquigarrow y \in D$, then $y \in D$. It can be easily proved that for any $x, y \in X$, if $x \in D$ and $x \leq y$, then $y \in D$.

A deductive system D of a pseudo-BCI-algebra X is called: (1) proper if $D \neq X$ and (2) closed if D is closed under operations \rightarrow and \rightsquigarrow, that is, if D is a subalgebra of X. It is not difficult to show (see [2]) that a deductive system D of a pseudo-BCI-algebra X is closed if and only if for any $x \in D, x \rightarrow 1=x \rightsquigarrow 1 \in D$. Obviously, the pseudo-BCK-part $K(X)$ is a closed deductive system of X.

A deductive system D of a pseudo-BCI-algebra X is called compatible if for all $x, y \in X$,

$$
x \rightarrow y \in D \text { iff } x \rightsquigarrow y \in D
$$

Further, if D is a compatible deductive system of X, then the relation θ_{D} defined by

$$
\begin{equation*}
(x, y) \in \theta_{D} \quad \text { iff } \quad x \rightarrow y \in D \text { and } y \rightarrow x \in D \tag{1}
\end{equation*}
$$

is a congruence, where $[1]_{\theta_{D}} \subseteq D$ is a closed compatible deductive system of X. Moreover, $[1]_{\theta_{D}}=D$ if and only if D is closed.

We say that $\theta \in \operatorname{Con}(X)$ is a relative congruence of X if the quotient algebra $\left(X / \theta ; \rightarrow, \rightsquigarrow,[1]_{\theta}\right)$ is a pseudo-BCI-algebra. It is proved in [3] that relative congruences of X correspond one-to-one to closed compatible deductive systems of X, that is, every relative congruence of X is given by (1) for some closed compatible deductive system D. For every relative congruence θ_{D}, the quotient algebra
$\left(X / \theta_{D} ; \rightarrow, \rightsquigarrow,[1]_{\theta_{D}}\right)$ will be usually denoted by $\left(X / D ; \rightarrow, \rightsquigarrow,[1]_{D}\right)$ and then we will write $[x]_{D}$ instead of $[x]_{\theta_{D}}$.

Remark. Although the set $M(X)$ is a subalgebra of a pseudo-BCI-algebra X, it does not have to be a deductive system of X. Let X be the pseudo-BCI-algebra from Example 2.1. It is easy to see that $M(X)=\{d, 1\}$ is not a deductive system of X.

From [2] we have the following.
Proposition 3.1. Let X be a pseudo-BCI-algebra. The following are equivalent:
(i) $M(X)$ is a deductive system of X,
(ii) for all $x, y \in X$ and $a \in M(X), a \rightarrow x=a \rightarrow y$ implies $x=y$,
(iii) for all $x, y \in X$ and $a \in M(X), a \rightsquigarrow x=a \rightsquigarrow y$ implies $x=y$.

Here we have the following theorem.
Theorem 3.2. Let X be a pseudo-BCI-algebra. The following are equivalent:
(i) $M(X)$ is a deductive system of X,
(ii) $x=(a \rightarrow 1) \rightarrow(a \rightarrow x)$ for all $x \in X$ and $a \in M(X)$,
(iii) $x=(a \rightsquigarrow 1) \rightsquigarrow(a \rightsquigarrow x)$ for all $x \in X$ and $a \in M(X)$.

Proof. (i) \Rightarrow (ii): Assume that $M(X)$ is a deductive system of X. Let $x \in X$ and $a \in M(X)$. Then, by (b4) and Proposition 2.5, we have

$$
a \rightarrow(((a \rightarrow 1) \rightarrow(a \rightarrow x)) \rightsquigarrow x)=((a \rightarrow 1) \rightarrow(a \rightarrow x)) \rightsquigarrow(a \rightarrow x)=a \rightarrow 1
$$

Hence, by Proposition $3.1,((a \rightarrow 1) \rightarrow(a \rightarrow x)) \rightsquigarrow x=1$, that is,

$$
(a \rightarrow 1) \rightarrow(a \rightarrow x) \leq x
$$

On the other hand, again by (b4),

$$
\begin{aligned}
x \rightsquigarrow((a \rightarrow 1) \rightarrow(a \rightarrow x)) & =(a \rightarrow 1) \rightarrow(a \rightarrow(x \rightsquigarrow x)) \\
& =(a \rightarrow 1) \rightarrow(a \rightarrow 1) \\
& =1,
\end{aligned}
$$

that is,

$$
x \leq(a \rightarrow 1) \rightarrow(a \rightarrow x)
$$

Hence, $x=(a \rightarrow 1) \rightarrow(a \rightarrow x)$ and (ii) is satisfied.
(ii) \Rightarrow (i): Assume that (ii) is satisfied. We use Proposition 3.1. Let $x, y \in X$ and $a \in M(X)$. Suppose that $a \rightarrow x=a \rightarrow y$. Then, by (ii), we get

$$
x=(a \rightarrow 1) \rightarrow(a \rightarrow x)=(a \rightarrow 1) \rightarrow(a \rightarrow y)=y .
$$

Therefore, by Proposition 3.1, $M(X)$ is a deductive system of X.
(i) \Leftrightarrow (iii): Analogous.

Remark. From [3] we know that $K(X)$ is a closed compatible deductive system of a pseudo-BCI-algebra X and $X / K(X) \cong M(X)$. We also have the following proposition.

Proposition 3.3. Let X be a pseudo-BCI-algebra. If $M(X)$ is a compatible deductive system of X, then $X / M(X) \cong K(X)$. Moreover, $[x]_{M(X)} \neq[y]_{M(X)}$ for all $x, y \in V(a)$ such that $x \neq y$, where $a \in M(X)$.

Proof. Since $M(X)$ is a (closed) compatible deductive system of X, we have $X / M(X)$ is a pseudo-BCI-algebra. Define a function $f: K(X) \rightarrow X / M(X)$ as follows:

$$
f(x)=[x]_{M(X)} \text { for all } x \in K(X) .
$$

Since

$$
f(x \rightarrow y)=[x \rightarrow y]_{M(X)}=[x]_{M(X)} \rightarrow[y]_{M(X)}=f(x) \rightarrow f(y)
$$

and

$$
f(x \rightsquigarrow y)=[x \rightsquigarrow y]_{M(X)}=[x]_{M(X)} \rightsquigarrow[y]_{M(X)}=f(x) \rightsquigarrow f(y),
$$

so f is a homomorphism. Take $x, y \in K(X)$ such that $x \neq y$. Then $x \rightarrow y \neq 1$ or $y \rightarrow x \neq 1$. Hence, $x \rightarrow y \notin M(X)$ or $y \rightarrow x \notin M(X)$, that is, $[x]_{M(X)} \neq$ $[y]_{M(X)}$. Thus, f is injective. Now, take $x \in X$ and $a=(x \rightarrow 1) \rightarrow 1$. Then $a \in M(X)$ and $x \in V(a)$. Hence, by Proposition 2.8, $a \rightarrow x \in K(X)$. Thus, since $[a]_{M(X)}=[1]_{M(X)}$, we have

$$
\begin{aligned}
f(a \rightarrow x) & =[a \rightarrow x]_{M(X)} \\
& =[a]_{M(X)} \rightarrow[x]_{M(X)} \\
& =[1]_{M(X)} \rightarrow[x]_{M(X)} \\
& =[x]_{M(X)} .
\end{aligned}
$$

Hence f is also surjective. Therefore f is an isomorphism, that is, $X / M(X) \cong$ $K(X)$.

Finally, let $a \in M(X), x, y \in V(a)$ and $x \neq y$. Then, $x \rightarrow y, y \rightarrow x \in K(X)$. If $[x]_{M(X)}=[y]_{M(X)}$, then $x \rightarrow y \in M(X)$ and $y \rightarrow x \in M(X)$. Hence, $x \rightarrow y=1$ and $y \rightarrow x=1$, that is, $x=y$ and we get a contradiction. Thus, $[x]_{M(X)} \neq[y]_{M(X)}$.

Theorem 3.4. Let X be a pseudo-BCI-algebra. Then $X \cong K(X) \times M(X)$ if and only if $M(X)$ is a compatible deductive system of X.

Proof. Assume that $X \cong K(X) \times M(X)$. Let $f: X \rightarrow K(X) \times M(X)$ be an isomorphism. Let π_{K} and π_{M} be projection maps onto $K(X)$ and $M(X)$, respectively. Denote

$$
f_{K}=\pi_{K} \circ f: X \rightarrow K(X)
$$

and

$$
f_{M}=\pi_{M} \circ f: X \rightarrow M(X) .
$$

Obviously, f_{K} and f_{M} are both homomorphisms. The following are easy to show:
(i) $f(x)=\left(f_{K}(x), f_{M}(x)\right)$ for all $x \in X$,
(ii) $f_{K}(x)=1$ for all $x \in M(X)$,
(iii) $f_{M}(x)=1$ for all $x \in K(X)$,
(iv) if x and y are in the same branch $V(a)$, then $f_{M}(x)=f_{M}(y)=a$,
(v) if x and y are in the same branch and $x \neq y$, then $f_{K}(x) \neq f_{K}(y)$.

Now, by (ii) and (v), it follows that $M(X)=\operatorname{ker}\left(f_{K}\right)$, that is, it is a (closed) compatible deductive system of X.

Conversely, assume that $M(X)$ is a compatible deductive system of X. Obviously, it is closed. Hence $X / M(X)$ is a pseudo-BCI-algebra. From Proposition 3.3, we know that $X / M(X) \cong K(X)$. Since also $X / K(X) \cong M(X)$, it suffices to show that $X \cong X / M(X) \times X / K(X)$. Define a function $g: X \rightarrow$ $X / M(X) \times X / K(X)$ as follows:

$$
g(x)=\left([x]_{M(X)},[x]_{K(X)}\right) \text { for all } x \in X .
$$

Obviously, g is a homomorphism. First, we prove that it is injective. Let $x, y \in X$ and $g(x)=g(y)$. Then, $\left([x]_{M(X)},[x]_{K(X)}\right)=\left([y]_{M(X)},[y]_{K(X)}\right)$, whence $[x]_{M(X)}=[y]_{M(X)}$ and $[x]_{K(X)}=[y]_{K(X)}$. Hence, $x \rightarrow y, y \rightarrow x \in M(X)$ and $x \rightarrow y, y \rightarrow x \in K(X)$. These are possible only in case $x \rightarrow y=y \rightarrow x=1$. Thus, $x=y$ and g is injective.

Next, we show that g is surjective. Let $\left([x]_{M(X)},[y]_{K(X)}\right) \in X / M(X) \times$ $X / K(X)$. Denote $a=(x \rightarrow 1) \rightarrow 1$ and $b=(y \rightarrow 1) \rightarrow 1$. Then, $a, b \in M(X)$. Since $(a \rightarrow x) \rightsquigarrow x=a \in M(X)$ and $x \rightsquigarrow(a \rightarrow x)=a \rightarrow 1 \in M(X)$, we have $[x]_{M(X)}=[a \rightarrow x]_{M(X)}$. Moreover, since $y \in V(b)$, by Proposition 2.8, $b \rightarrow y, y \rightarrow b \in K(X)$. Hence, $[y]_{K(X)}=[b]_{K(X)}$. Thus,

$$
\left([x]_{M(X)},[y]_{K(X)}\right)=\left([a \rightarrow x]_{M(X)},[b]_{K(X)}\right) .
$$

Let $z=(b \rightarrow 1) \rightarrow(a \rightarrow x)$. We have $a \rightarrow x \in K(X)$ by Proposition 2.8, and $z \in V((b \rightarrow 1) \rightarrow 1)=V(b)$ by Proposition 2.7, whence $[z]_{K(X)}=[b]_{K(X)}$. Moreover, by (b4) and Proposition 2.5, we have

$$
(a \rightarrow x) \rightsquigarrow z=(a \rightarrow x) \rightsquigarrow((b \rightarrow 1) \rightarrow(a \rightarrow x))=(b \rightarrow 1) \rightarrow 1=b \in M(X)
$$

and

$$
z \rightsquigarrow(a \rightarrow x)=((b \rightarrow 1) \rightarrow(a \rightarrow x)) \rightsquigarrow(a \rightarrow x)=b \rightarrow 1 \in M(X) .
$$

Hence, $[z]_{M(X)}=[a \rightarrow x]_{M(X)}$. Thus,

$$
g(z)=\left([z]_{M(X)},[z]_{K(X)}\right)=\left([a \rightarrow x]_{M(X)},[b]_{K(X)}\right)=\left([x]_{M(X)},[y]_{K(X)}\right) .
$$

Hence, g is surjective.
Therefore, g is an isomorphism, that is, $X \cong X / M(X) \times X / K(X) \cong K(X) \times$ $M(X)$.

Remark. It is easy to see that for the pseudo-BCI-algebra X from Example 2.1, $M(X)$ is not a (compatible) deductive system of X and $X \nexists K(X) \times M(X)$, and for the pseudo-BCI-algebra Y from Example 2.4, $M(Y)$ is a compatible deductive system of Y and $Y \cong K(Y) \times M(Y)$.

For any non-empty subset A of a pseudo-BCI-algebra X, denote

$$
M(A)=\{(x \rightarrow 1) \rightarrow 1: x \in A\} .
$$

Obviously, $M(A) \subseteq M(X)$ and $A \cap M(X) \subseteq M(A)$.
Proposition 3.5. Let X be a pseudo-BCI-algebra and D be a deductive system of X. Then
(i) $M(D)=D \cap M(X)$,
(ii) $M(D)$ is a deductive system of $M(X)$.

Proof. (i) It suffices to prove that $M(D) \subseteq D \cap M(X)$. Let $x \in D$. Then, by (a2), $(x \rightarrow 1) \rightarrow 1 \in D$. Thus, $(x \rightarrow 1) \rightarrow 1 \in D \cap M(X)$, that is, $M(D)=D \cap M(X)$.
(ii) Obviously, $1 \in M(D)$. Let $x, y \in M(X)$ be such that $x \in M(D)$ and $x \rightarrow y \in M(D)$. Then, we have $x, x \rightarrow y \in D$ and $x, x \rightarrow y \in M(X)$. Hence, since D is a deductive system of $X, y \in D \cap M(X)=M(D)$. Therefore, $M(D)$ is a deductive system of X.

Remark. If $M(D)$ is a deductive system of $M(X)$, then D does not have to be a deductive system of X. Let X be the pseudo-BCI-algebra from Example 2.1. Then, for $D=\{a, 1\}, M(D)=\{1\}$ is a deductive system of $M(X)$, but D is not a deductive system of X.

From [2] we have the following fact.

Proposition 3.6. Let X be a pseudo-BCI-algebra. If D is a subalgebra of X, then $M(D)$ is a closed deductive system of $M(X)$.

Remark. If $M(D)$ is a closed deductive system of $M(X)$, then D does not have to be a subalgebra of X. Let X be the pseudo-BCI-algebra from Example 2.1. Then for $D=\{a, b, 1\}$ we have $M(D)=\{1\}$ is a closed deductive system of $M(X)$, but D is not a subalgebra of X.

Proposition 3.7. Let X be a pseudo-BCI-algebra. A deductive system D of X is closed if and only if a deductive system $M(D)$ is closed in $M(X)$.

Proof. By Proposition 3.6, it suffices to prove that if $M(D)$ is closed in $M(X)$, then D is closed in X. Assume that a deductive system $M(D)$ is closed in $M(X)$. Let $x \in D$. Then, $(x \rightarrow 1) \rightarrow 1 \in M(D)$. Hence, using (b9) and (b12), $x \rightarrow 1=((x \rightarrow 1) \rightarrow 1) \rightarrow 1 \in M(D)$. By Proposition 3.5(i), $x \rightarrow 1 \in D$, that is, D is closed.

Moreover, it is not difficult to show the following.
Proposition 3.8. Let X be a pseudo-BCI-algebra. If D is a compatible deductive system of X, then $M(D)$ is a compatible deductive system of $M(X)$.

Remark. The converse of Proposition 3.8 does not hold. Let X be the pseudo-BCI-algebra from Example 2.1. Then, for $D=\{c, 1\}, M(D)=\{1\}$ is a compatible deductive system of $M(X)$, but D is a deductive system of X which is not compatible.

Theorem 3.9. Let X be a pseudo-BCI-algebra and $A \subseteq M(X)$. Then, $D=$ $\cup_{a \in A} V(a)$ is a subalgebra of X if and only if A is a subalgebra of $M(X)$.
Proof. Assume that D is a subalgebra of X. Let $a, b \in A$. Then, $V(a), V(b) \subseteq D$, that is, $a \rightarrow b, a \rightsquigarrow b \in D$. Since $a \rightarrow b$ and $a \rightsquigarrow b$ are maximal elements of X, $V(a \rightarrow b), V(a \rightsquigarrow b) \subseteq D$, that is, $a \rightarrow b, a \rightsquigarrow b \in A$. Therefore, A is a subalgebra of $M(X)$.

Conversely, assume that A is a subalgebra of $M(X)$. Let $x, y \in D$. Then, there are $a, b \in A$ such that $x \in V(a), y \in V(b)$ and $a \rightarrow b, a \rightsquigarrow b \in A$. By Proposition 2.7, $x \rightarrow y \in V(a \rightarrow b) \subseteq D$ and $x \rightsquigarrow y \in V(a \rightsquigarrow b) \subseteq D$. Therefore, D is a subalgebra of X.

Theorem 3.10. Let X be a pseudo-BCI-algebra and $A \subseteq M(X)$. Then, $D=$ $\bigcup_{a \in A} V(a)$ is a deductive system of X if and only if A is a deductive system of $M(X)$.

Proof. If D is a deductive system of X, then by Proposition 3.5, $M(D)=$ $D \cap M(X)=A$ is a deductive system of $M(X)$.

Conversely, assume that A is a deductive system of $M(X)$. Obviously, $1 \in D$. Let $x, y \in X$ be such that $x, x \rightarrow y \in D$. Denote $a=(x \rightarrow 1) \rightarrow 1, b=((x \rightarrow$ $y) \rightarrow 1) \rightarrow 1$ and $c=(y \rightarrow 1) \rightarrow 1$. It is clear that $a, b, c \in M(X), x \in V(a)$, $x \rightarrow y \in V(b)$ and $y \in V(c)$. Moreover, by Proposition 2.7, $x \rightarrow y \in V(a \rightarrow c)$. Hence, $a \rightarrow c=b \in A$. Since $a \in A$ and A is a deductive system of $M(X)$, we get $c \in A$. Thus, $y \in V(c) \subseteq D$. Therefore, D is a deductive system of X.

The following fact is proved in [2].
Proposition 3.11. Let X be a p-semisimple pseudo-BCI-algebra and $D \subseteq X$. Then, D is a closed deductive system of X if and only if it is a subalgebra of X.

Theorem 3.12. Let $(X ; \rightarrow, \rightsquigarrow, 1)$ be a p-semisimple pseudo-BCI-algebra. Then the following are equivalent:
(i) D is a closed deductive system of $(X ; \rightarrow, \rightsquigarrow, 1)$,
(ii) D is a subalgebra of $(X ; \rightarrow, \rightsquigarrow, 1)$,
(iii) D is a subgroup of $\left(X ; \cdot,{ }^{-1}, 1\right)$.

Proof. (i) \Leftrightarrow (ii): Follows by Proposition 3.11.
$(\mathrm{i}) \Rightarrow(\mathrm{iii}):$ Assume that D is a closed deductive system. Let $x, y \in D$. Then, $x \rightsquigarrow(x \cdot y)=x^{-1} \cdot(x \cdot y)=y \in D$. Hence, $x \cdot y \in D$. Moreover, since D is closed, $x^{-1}=x \rightarrow 1 \in D$ for any $x \in D$. Thus, D is a subgroup.
$($ iii $) \Rightarrow(\mathrm{i})$: Assume that D is a subgroup. Obviously, $1 \in D$. Let $x, x \rightarrow y \in D$. Then, $y \cdot x^{-1} \in D$ and so $y=\left(y \cdot x^{-1}\right) \cdot x \in D$. Thus, D is a deductive system. Moreover, $x \rightarrow 1=x^{-1} \in D$ for any $x \in X$, that is, D is closed.

Moreover, we have the following simple proposition.
Proposition 3.13. Let $(X ; \rightarrow, \rightsquigarrow, 1)$ be a p-semisimple pseudo-BCI-algebra. The following are equivalent:
(i) D is a closed compatible deductive system of $(X ; \rightarrow, \rightsquigarrow, 1)$,
(ii) D is a normal subgroup of $\left(X ; \cdot,{ }^{-1}, 1\right)$.

Combining Theorems 3.9, 3.10 and 3.12 we have the following theorem.
Theorem 3.14. Let $(X ; \rightarrow, \rightsquigarrow, 1)$ be a pseudo-BCI-algebra, $A \subseteq M(X)$ and $D=\bigcup_{a \in A} V(a)$. Then the following are equivalent:
(i) D is a subalgebra of $(X ; \rightarrow, \rightsquigarrow, 1)$,
(ii) A is a subalgebra of $(M(X) ; \rightarrow, \rightsquigarrow, 1)$,
(iii) A is a subgroup of $\left(M(X) ; \cdot,{ }^{-1}, 1\right)$
(iv) A is a closed deductive system of $(M(X) ; \rightarrow, \rightsquigarrow, 1)$,
(v) D is a closed deductive system of $(X ; \rightarrow, \rightsquigarrow, 1)$.

4. Periodic part

Troughout this section, we recall some facts from [4] needed in the sequel. Let X be a pseudo-BCI-algebra. Define

$$
\begin{aligned}
& x \rightarrow^{0} y=y, \\
& x \rightarrow^{n} y=x \rightarrow\left(x \rightarrow^{n-1} y\right),
\end{aligned}
$$

where $x, y \in X$ and $n=1,2, \ldots$. Similarly, we define $x \rightsquigarrow^{n} y$ for any $n=$ $0,1,2, \ldots$.

Proposition 4.1 [4]. Let X be a pseudo-BCI-algebra. The following hold for any $x, y, z \in X$ and $m, n=0,1,2, \ldots$:
(i) $x \rightarrow^{n} 1=x \rightsquigarrow^{n} 1$,
(ii) $x \rightarrow^{n} x=x \rightarrow^{n-1} 1, \quad x \rightsquigarrow^{n} x=x \rightsquigarrow^{n-1} 1$,
(iii) $(x \rightarrow 1) \rightarrow^{n} 1=\left(x \rightarrow^{n} 1\right) \rightarrow 1, \quad(x \rightsquigarrow 1) \rightsquigarrow^{n} 1=\left(x \rightsquigarrow^{n} 1\right) \rightsquigarrow 1$,
(iv) $x \rightarrow\left(y \rightsquigarrow^{n} z\right)=y \rightsquigarrow^{n}(x \rightarrow z), \quad x \rightsquigarrow\left(y \rightarrow^{n} z\right)=y \rightarrow^{n}(x \rightsquigarrow z)$,
(v) $x \rightarrow^{m}\left(y \rightsquigarrow^{n} z\right)=y \rightsquigarrow^{n}\left(x \rightarrow^{m} z\right)$,
(vi) $x \rightarrow^{n} 1=((x \rightarrow 1) \rightarrow 1) \rightarrow^{n} 1, \quad x \rightsquigarrow^{n} 1=((x \rightsquigarrow 1) \rightsquigarrow 1) \rightsquigarrow^{n} 1$.

Lemma 4.2. Let X be a pseudo-BCI-algebra. The following hold for any $x, y \in$ X :
(i) $x \rightarrow^{m+n} y=x \rightarrow^{m}\left(x \rightarrow^{n} y\right)$ for any $m, n=0,1,2, \ldots$,
(ii) $x \rightarrow^{m n} y=x \rightarrow^{m}\left(\ldots \rightarrow^{m}\left(x \rightarrow^{m} y\right) \ldots\right)(n$ times) for any $m=0,1,2, \ldots$ and $n=1,2, \ldots$.

Proof. Routine.
Lemma 4.3. Let X be a pseudo-BCI-algebra. The following hold for any $x \in X$ and $m, n=0,1,2, \ldots$:
(i) $\left(x \rightarrow^{m} 1\right) \rightarrow^{n} 1=(x \rightarrow 1) \rightarrow^{m n} 1$,
(ii) $\left(x \rightsquigarrow^{m} 1\right) \rightsquigarrow^{n} 1=(x \rightsquigarrow 1) \rightsquigarrow^{m n} 1$.

Proof. (i) We prove it by induction under n. For $n=0$ it is obvious. Assume it for $n=k$:

$$
\left(x \rightarrow^{m} 1\right) \rightarrow^{k} 1=(x \rightarrow 1) \rightarrow^{m k} 1
$$

We have, by assumption and Proposition 4.1(i,iii,v),

$$
\begin{aligned}
\left(x \rightarrow^{m} 1\right) \rightarrow^{k+1} 1 & =\left(x \rightarrow^{m} 1\right) \rightarrow\left(\left(x \rightarrow^{m} 1\right) \rightarrow^{k} 1\right) \\
& =\left(x \rightarrow^{m} 1\right) \rightarrow\left((x \rightarrow 1) \rightarrow^{m k} 1\right) \\
& =\left(x \rightarrow^{m} 1\right) \rightarrow\left((x \rightarrow 1) \rightsquigarrow^{m k} 1\right) \\
& =(x \rightarrow 1) \rightsquigarrow^{m k}\left(\left(x \rightarrow^{m} 1\right) \rightarrow 1\right) \\
& =(x \rightarrow 1) \rightsquigarrow^{m k}\left((x \rightarrow 1) \rightarrow^{m} 1\right) \\
& =(x \rightarrow 1) \rightarrow^{m}\left((x \rightarrow 1) \rightsquigarrow^{m k} 1\right) \\
& =(x \rightarrow 1) \rightarrow^{m}\left((x \rightarrow 1) \rightarrow^{m k} 1\right) \\
& =(x \rightarrow 1) \rightarrow^{m(k+1)} 1 .
\end{aligned}
$$

So, the equation (i) holds for any $n=0,1,2, \ldots$.
(ii) Follows from (i) and Proposition 4.1(i).

Let X be a pseudo-BCI-algebra. For any $x \in X$, if there exists the least natural number n such that $x \rightarrow^{n} 1=1$, then n is called a period of x denoted $p(x)$. If, for any natural number $n, x \rightarrow^{n} 1 \neq 1$, then a period of x is called to be infinite and denoted $p(x)=\infty$. Obviously, $p(1)=1$.

Proposition 4.4 [4]. Let X be a pseudo-BCI-algebra. Then the following hold for any $x, y \in X$,
(i) $p(x)=p(x \rightarrow 1)=p(x \rightsquigarrow 1)$,
(ii) if $x \leq y$, then $p(x)=p(y)$,
(iii) $p(x \rightarrow y)=p(y \rightarrow x), \quad p(x \rightsquigarrow y)=p(y \rightsquigarrow x)$,
(iv) $p(x \rightarrow y)=p(x \rightsquigarrow y)$.

Proposition 4.5 [4]. Let $(X ; \rightarrow, \rightsquigarrow, 1)$ be a p-semisimple pseudo-BCI-algebra and $\left(X ; \cdot,^{-1}, 1\right)$ be a group related with X. Then $p(x)=o(x)$ for any $x \in X$, where $o(x)$ means an order of an element x in a group $\left(X ; \cdot,{ }^{-1}, 1\right)$.

Proposition 4.6 [4]. Let X be a pseudo-BCI-algebra. Then
(i) X is a pseudo-BCK-algebra if and only if $p(x)=1$ for any $x \in X$,
(ii) X is p-semisimple if and only if $p(x)>1$ for any $x \in X \backslash\{1\}$.

Proposition 4.7. Let X be a pseudo-BCI-algebra and $a \in M(X)$. If $x \in V(a)$, then $p(x)=p(a)$.

Proof. Assume that $a \in M(X)$ and $x \in V(a)$. By Proposition 2.6, $x \rightarrow 1=a \rightarrow$ 1. Hence, by Proposition 4.4(i), we have $p(x)=p(x \rightarrow 1)=p(a \rightarrow 1)=p(a)$.

Corollary 4.8. In any pseudo-BCI-algebra, all elements in the same branch have the same period.

Remark. By Proposition 4.7 we can reduce the study of periods of elements of a pseudo-BCI-algebra to the study of periods of maximal elements.

Proposition 4.9. Let X be a pseudo-BCI-algebra. If x and y are in the same branch, then $p(x \rightarrow y)=p(x \rightsquigarrow y)=1$.

Proof. Follows from Propositions 4.4(iv) and 2.8.
Proposition 4.10. Let X be a pseudo-BCI-algebra, $x \in X, m, n \in \mathbb{N}$ and $p(x)=$ m. Then, $x \rightarrow^{n} 1=1$ if and only if $m \mid n$.

Proof. Let $x \in X$ and $p(x)=m$ for some $m \in \mathbb{N}$. Assume that $x \rightarrow^{n} 1=1$ for some $n \in \mathbb{N}$. Suppose that $n=m p+r$, for some $p, r \in \mathbb{N}$ and $1 \leq r<m$. Then, by Lemma 4.2,

$$
\begin{aligned}
1 & =x \rightarrow^{n} 1=x \rightarrow^{m p+r} 1=x \rightarrow^{r}\left(x \rightarrow^{m p} 1\right) \\
& =x \rightarrow^{r}\left(x \rightarrow^{m}\left(\ldots \rightarrow^{m}\left(x \rightarrow^{m} 1\right) \ldots\right)\right)(p \text { times }) \\
& =x \rightarrow^{r} 1
\end{aligned}
$$

But, $r<m=p(x)$ which is impossible. Therefore, $m \mid n$.
Conversely, assume that $m \mid n$, that is, $n=m p$ for some $p \in \mathbb{N}$. Then, by Lemma 4.2 (ii), we get $x \rightarrow^{n} 1=x \rightarrow^{m p} 1=x \rightarrow^{m}\left(\ldots \rightarrow^{m}\left(x \rightarrow^{m}\right.\right.$ 1) $\ldots)(p$ times $)=1$.

Let X be a pseudo-BCI-algebra. The set

$$
P(X)=\{x \in X: p(x)<\infty\}
$$

is called a periodic part of X. Moreover, denote

$$
P_{M}(X)=\{x \in M(X): p(x)<\infty\}
$$

Obviously, $P_{M}(X) \subseteq P(X)$.

Proposition 4.11. Let X be a pseudo-BCI-algebra. Then the following hold:
(i) $K(X) \subseteq P(X)$,
(ii) $P(X)=\bigcup_{a \in P_{M}(X)} V(a)$.

Proof. (i) Obvious.
(ii) Follows from Proposition 4.7.

Remark. Note that for the pseudo-BCI-algebra X from Example 2.1, $P_{M}(X)=$ $M(X)$ and $P(X)=X$, and for the pseudo-BCI-algebra Y from Example 2.4, $P_{M}(Y)=\{(0,0,0)\}$ and $P(Y)=K(Y)$.

Remark. It is well known that a torsion part of a non-abelian group does not have to be a subgroup. Hence, by Theorem 3.12 and Proposition $4.5, P_{M}(X)$ does not have to be a closed deductive system of a p-semisimple pseudo-BCI-algebra X. Thus, by Theorem 3.14 and Proposition 4.11(ii), $P(X)$ does not have to be a closed deductive system of a pseudo-BCI-algebra X.

The following facts follow from Theorem 3.14 and Propositions $4.4(i v)$ and 4.11 .
Proposition 4.12. Let X be a pseudo-BCI-algebra and let $P_{M}(X)$ be a subalgebra of $M(X)$. Then
(i) $P_{M}(X)$ is a closed compatible deductive system of $M(X)$,
(ii) $P(X)$ is a closed compatible deductive system of X.

Let X be a pseudo-BCI-algebra. Denote by $D(a)$ a deductive system of X generated by $\{a\}$, where $a \in X$. From [3] we know that, for any $a \in X$,

$$
\begin{aligned}
D(a) & =\{1\} \cup\left\{x \in X: a \rightarrow^{n} x=1 \text { for some } n \in \mathbb{N}\right\} \\
& =\{1\} \cup\left\{x \in X: a \rightsquigarrow^{n} x=1 \text { for some } n \in \mathbb{N}\right\} .
\end{aligned}
$$

Proposition 4.13. Let X be a pseudo-BCI-algebra. Then a deductive system $D(a)$ is closed for any $a \in P(X)$.

Proof. If $a \in P(X)$, then there exists $k \in \mathbb{N}$ such that $p(a)=k$. Hence, $a \rightarrow^{k} 1=1 \in D(a)$. Moreover, it is not difficult to show that also $a \rightarrow 1, a \rightarrow^{2}$ $1, \ldots, a \rightarrow^{k-1} 1 \in D(a)$. Now, let $x \in D(a)$. We show that $x \rightarrow 1 \in D(a)$, that is, $D(a)$ is closed. If $x=1$, then the thesis is obvious. Assume that $x \neq 1$. Then there exists $n \in \mathbb{N}$ such that $a \rightarrow^{n} x=1$. Thus, by (b12) and Proposition 4.1(iv),

$$
x \rightarrow 1=x \rightsquigarrow 1=x \rightsquigarrow\left(a \rightarrow^{n} x\right)=a \rightarrow^{n}(x \rightsquigarrow x)=a \rightarrow^{n} 1 .
$$

Further, remark that there is $l \in \mathbb{N}$ such that $0 \leq l \leq k-1$ and $n=k p+l$ for some $p \in \mathbb{N}$. Hence, by Lemma 4.2 and the equation $a \rightarrow^{k} 1=1$ we get

$$
\begin{aligned}
a \rightarrow^{n} 1 & =a \rightarrow^{k p+l} 1=a \rightarrow^{l}\left(a \rightarrow^{k p} 1\right) \\
& =a \rightarrow^{l}\left(a \rightarrow^{k}\left(\ldots \rightarrow^{k}\left(a \rightarrow^{k} 1\right) \ldots\right)\right)(p \text { times }) \\
& =a \rightarrow^{l} 1 .
\end{aligned}
$$

Thus,

$$
x \rightarrow 1=a \rightarrow^{n} 1=a \rightarrow^{l} 1 \in D(a) .
$$

Therefore, a deductive system $D(a)$ is closed.

A pseudo-BCI-algebra X is called: (1) periodic if $P(X)=X$, and (2) aperiodic if $p(x)=\infty$ for any $x \notin K(X)$. Obviously, every pseudo-BCK-algebra is periodic as well as aperiodic.

Remark. It is not difficult to see that the pseudo-BCI-algebra X from Example 2.1 is periodic, and the pseudo-BCI-algebra Y from Example 2.4 is aperiodic.

Theorem 4.14. Let X be a pseudo-BCI-algebra and let $P_{M}(X)$ be a subalgebra of $M(X)$. Then $X / P(X)$ is an aperiodic p-semisimple pseudo-BCI-algebra and $X / P(X) \cong M(X) / P_{M}(X)$.

Proof. Note that by Proposition 4.12, $P_{M}(X)$ is a closed compatible deductive system of $M(X)$ and $P(X)$ is a closed compatible deductive system of X. Hence, $M(X) / P_{M}(X)$ and $X / P(X)$ are both pseudo-BCI-algebras.

First, we show that $M(X) / P_{M}(X)$ is p-semisimple. We will denote by $[x]_{P_{M}(X)}^{M}$ for $x \in M(X)$ elements of $M(X) / P_{M}(X)$. Assume that $[x]_{P_{M}(X)}^{M} \rightarrow[1]_{P_{M}(X)}^{M}=$ $[1]_{P_{M}(X)}^{M}$ for some $x \in M(X)$. Then, $[x \rightarrow 1]_{P_{M}(X)}^{M}=[1]_{P_{M}(X)}^{M}$, that is, $x \rightarrow 1 \in$ $P_{M}(X)$. Hence, by Proposition 4.4(i), $p(x)=p(x \rightarrow 1)<\infty$, that is, $x \in P_{M}(X)$. Thus, $[x]_{P_{M}(X)}^{M}=[1]_{P_{M}(X)}^{M}$. Therefore, a pseudo-BCI-algebra $M(X) / P_{M}(X)$ is p-semisimple.

Next, we show that $X / P(X)$ and $M(X) / P_{M}(X)$ are isomorphic. Define a function $f: X / P(X) \rightarrow M(X) / P_{M}(X)$ as follows:

$$
f\left([x]_{P(X)}\right)=[(x \rightarrow 1) \rightarrow 1]_{P_{M}(X)}^{M}
$$

for any $x \in X$. Obviously, f is well-defined. We show that it is an isomorphism. Let $x, y \in X$. By (b11) and (b12), we have

$$
\begin{aligned}
f\left([x]_{P(X)} \rightarrow[y]_{P(X)}\right) & =f\left([x \rightarrow y]_{P(X)}\right) \\
& =[((x \rightarrow y) \rightarrow 1) \rightarrow 1]_{P_{M}(X)}^{M} \\
& =[((x \rightarrow 1) \rightsquigarrow(y \rightarrow 1)) \rightarrow 1]_{P_{M}(X)}^{M} \\
& =[((x \rightarrow 1) \rightarrow 1) \rightarrow((y \rightarrow 1) \rightarrow 1)]_{P_{M}(X)}^{M} \\
& =[(x \rightarrow 1) \rightarrow 1]_{P_{M}(X)}^{M} \rightarrow[(y \rightarrow 1) \rightarrow 1]_{P_{M}(X)}^{M} \\
& =f\left([x]_{P(X)}\right) \rightarrow f\left([y]_{P(X)}\right) .
\end{aligned}
$$

Similarly, $f\left([x]_{P(X)} \rightsquigarrow[y]_{P(X)}\right)=f\left([x]_{P(X)}\right) \rightsquigarrow f\left([y]_{P(X)}\right)$. Hence, f is a homomorphism. Moreover, since $M(X) / P_{M}(X)$ is p-semisimple, it is easy to see that f is surjective. Now, let $x, y \in X$ be such that $[x]_{P(X)} \neq[y]_{P(X)}$. Then, $x \rightarrow y \notin P(X)$ or $y \rightarrow x \notin P(X)$. Assume, for example, that $x \rightarrow y \notin P(X)$. Proof of the case $y \rightarrow x \notin P(X)$ is analogous. Since $x \rightarrow y \notin P(X)$, by (b11), (b12) and Proposition 4.4, we have

$$
((x \rightarrow 1) \rightarrow 1) \rightarrow((y \rightarrow 1) \rightarrow 1)=((x \rightarrow y) \rightarrow 1) \rightarrow 1 \notin P_{M}(X)
$$

that is,

$$
f\left([x]_{P(X)}\right)=[(x \rightarrow 1) \rightarrow 1]_{P_{M}(X)}^{M} \neq[(y \rightarrow 1) \rightarrow 1]_{P_{M}(X)}^{M}=f\left([y]_{P(X)}\right)
$$

Hence, f is injective and so an isomorphism. Thus, we immediately have that $X / P(X)$ is p-semisimple.

Finally, to prove that $X / P(X)$ is aperiodic, it is sufficient to prove that $M(X) / P_{M}(X)$ is aperiodic. Since $M(X) / P_{M}(X)$ is p-semisimple, we have to show that for any $x \in M(X),[x]_{P_{M}(X)}^{M} \neq[1]_{P_{M}(X)}^{M}$ implies $p\left([x]_{P_{M}(X)}^{M}\right)=\infty$. Assume that there is $x \in M(X)$ such that $[x]_{P_{M}(X)}^{M} \neq[1]_{P_{M}(X)}^{M}$ and $p\left([x]_{P_{M}(X)}^{M}\right)=n$ for some $n \in \mathbb{N}$. Then,

$$
\left[x \rightarrow^{n} 1\right]_{P_{M}(X)}^{M}=[x]_{P_{M}(X)}^{M} \rightarrow^{n}[1]_{P_{M}(X)}^{M}=[1]_{P_{M}(X)}^{M}
$$

Hence, $x \rightarrow^{n} 1 \in P_{M}(X)$, that is, there exists $m \in \mathbb{N}$ such that $p\left(x \rightarrow^{n} 1\right)=m$. Thus, $\left(x \rightarrow^{n} 1\right) \rightarrow^{m} 1=1$. Hence, by Lemma 4.3(i), $(x \rightarrow 1) \rightarrow^{m n} 1=1$, so $p(x \rightarrow 1) \leq m n$. By Proposition 4.4(i), $p(x) \leq m n$, whence $x \in P_{M}(X)$. Thus, $[x]_{P_{M}(X)}^{M}=[1]_{P_{M}(X)}^{M}$ and we get a contradiction. Therefore, $M(X) / P_{M}(X)$ is aperiodic, whence also $X / P(X)$ is aperiodic.

Example 4.15. Let Z be the set of all bijections $f: \mathbb{N} \rightarrow \mathbb{N}$. Define binary operations \rightarrow and \rightsquigarrow on Z by

$$
\begin{aligned}
& f \rightarrow g=g \circ f^{-1} \\
& f \rightsquigarrow g=f^{-1} \circ g
\end{aligned}
$$

for all $f, g \in Z$. Then the algebra $\left(Z ; \rightarrow, \rightsquigarrow, i d_{\mathbb{N}}\right)$ is a p-semisimple pseudo-BCIalgebra which is neither periodic nor aperiodic. Moreover, it is not difficult to see that

$$
P(Z)=P_{M}(Z)=\left\{f \in Z: \exists_{k \in \mathbb{N}} \forall_{n \geq k} f(n)=n\right\}
$$

is a closed compatible deductive system of Z. Hence, by Theorem 4.14, $Z / P(Z)$ is an aperiodic p -semisimple pseudo-BCI-algebra.

Acknowledgements

The author thanks the reviewer for remarks which were incorporated into this revised version.

References

[1] W.A. Dudek and Y.B. Jun, Pseudo-BCI algebras, East Asian Math. J. 24 (2008), 187-190.
[2] G. Dymek, Atoms and ideals of pseudo-BCI-algebras, Comment. Math. 52 (2012), 73-90.
[3] G. Dymek, On compatible deductive systems of pseudo-BCI-algebras, J. Mult.Valued Logic Soft Comput. 22 (2014), 167-187.
[4] G. Dymek, On a period of an element of pseudo-BCI-algebras, Discuss. Math. Gen. Algebra Appl., to appear.
[5] G. Dymek, On pseudo-BCI-algebras, Ann. Univ. Mariae Curie-Skłodowska Sect. A, to appear.
[6] G. Dymek, p-semisimple pseudo-BCI-algebras, J. Mult.-Valued Logic Soft Comput. 19 (2012), 461-474.
[7] A. Iorgulescu, Algebras of logic as BCK algebras, Editura ASE, Bucharest, 2008.
[8] K. Iséki, An algebra related with a propositional calculus, Proc. Japan Acad. 42 (1966), 26-29. doi:10.3792/pja/1195522171
[9] Y.B. Jun, H.S. Kim and J. Neggers, On pseudo-BCI ideals of pseudo BCI-algebras, Mat. Vesnik 58 (2006), 39-46.

