ArticleOriginal scientific text

Title

bi-BL-algebra

Authors 1, 2

Affiliations

  1. Department of Mathematics, Science and Research Branch, Islamic Azad University, Kerman, Iran
  2. Department of Mathematics, Shahid Bahonar University of Kerman, Kerman, Iran

Abstract

In this paper, we introduce the notion of a bi-BL-algebra, bi-filter, bi-deductive system and bi-Boolean elements of a bi-BL-algebra and deal with bi-filters in bi-BL-algebra. We study this structure and construct the quotient of bi-BL-algebra. Also present a classification for examples of proper bi-BL-algebras.

Keywords

bi-BL-algebra, bi-filter, bi-deductive system, bi-Boolean elements of a bi-BL-algebra

Bibliography

  1. A. Borumand Saeid, A. Ahadpanah and L. Torkzadeh, Smarandache BL-algebra, J. Applied Logic 8 (2010), 253-261. doi: 10.1016/j.jal.2010.06.001
  2. A. Borumand Saeid and S. Motamed, Normal filters in BL-algebras, World Applied Sci. J. 7 (Special Issue Appl. Math.), (2009), 70-76.
  3. A. Borumand Saeid and S. Motamed, Some Results in BL-algebras, Math. Logic Quat 55 (6) (2009), 649-658. doi: 10.1002/malq.200910025
  4. D. Busneag and D. Piciu, On the lattice of deductive systems of a BL-algebra, Central Eur. J Math. 1 (2) (2003), 221-238. doi: 10.2478/BF02476010
  5. R. Cingnoli, I.M.L. D'Ottaviano and D. Mundici, Algebraic Foundations of Many-valued Reasoning, Kluwer Academic publ., Dordrecht, 2000. doi: 10.1007/978-94-015-9480-6
  6. R. Cignoli, F. Esteva, L. Godo and A. Torrens, Basic fuzzy logic is the logic of continuous t-norm and their residua, Soft Comput 4 (2000), 106-112. doi: 10.1007/s005000000044
  7. A. Di Nola, G. Georgescu and A. Iorgulescu, Pseudo BL-algebra: Part I, Mult val logic 8 (5-6) (2002), 673-714.
  8. A. Di Nola and L. Leustean, Compact representations of BL-algebras, Arch-Math. Logic 42 (2003), 737-761. doi: 10.1007/s00153-003-0178-y
  9. P. Hajek, Metamathematics of Fuzzy Logic, Kluwer Academic Publishers, Dordrecht, 1998. http://dx.doi.org/10.1007/978-94-011-5300-3
  10. M. Haveshki, A. Borumand Saeid and E. Eslami, Some types of filters in BL-algebras, Soft Computing 10 (2006), 657-664. doi: 10.1007/s00500-005-0534-4
  11. A. Iorgulescu, Algebras of Logic as BCK-algebras, Academy of Economic Studies, Bucharest, Editura 2008.
  12. A. Iorgulescu, Classes of BCK-algebra-part III, Preprint series of the Institute of Mathematics of the Romanian Academy, preprint nr, 3/2004 (2004), 1-37.
  13. M. Kondo and W.A. Dudck, Filter theory of BL-algebras, Soft Computing 12 (2007), 419-423.
  14. R. Padilla, Smarandache algebraic structures, Bull. Pure Appl. Sci., Delhi 17 (1) (1998), 119-121.
  15. D. Piciu, Algebras of Fuzzy Logic, Ed. Universitaria Craiova, 2007.
  16. E. Turunen, BL-algebras of basic fuzzy logic, Mathware and soft computing 6 (1999), 49-61.
  17. E. Turunen, Boolean deductive systems of BL-algebras, Arch Math. Logic 40 (2001), 467-473. doi: 10.1007/s001530100088
  18. E. Turunen, Mathematics behind fuzzy logic, Physica-Verlag, 1999.
  19. W.B. Vasantha Kandasamy, Bialgebraic structures and Smaranche bialgebraic structures, American Research Press, 2003.
Pages:
231-260
Main language of publication
English
Received
2011-08-14
Accepted
2011-09-21
Published
2011
Exact and natural sciences