The class of p-semisimple pseudo-BCI-algebras and the class of branchwise commutative pseudo-BCI-algebras are studied. It is proved that they form varieties. Some congruence properties of these varieties are displayed.
Faculty of Mathematics and Natural Sciences, The John Paul II Catholic University of Lublin, Konstantynów 1H, 20-708 Lublin, Poland
Bibliografia
[1] W.A. Dudek and Y.B. Jun, Pseudo-BCI algebras, East Asian Math. J. 24 (2008), 187-190.
[2] G. Dymek, Atoms and ideals of pseudo-BCI-algebras, submitted.
[3] G. Dymek, On compatible deductive systems of pseudo-BCI-algebras, submitted.
[4] G. Dymek, p-semisimple pseudo-BCI-algebras, J. Mult.-Val. Log. Soft Comput., to appear.
[5] G. Dymek and A. Kozanecka-Dymek, Pseudo-BCI-logic, submitted.
[6] G. Georgescu and A. Iorgulescu, Pseudo-BCK algebras: an extension of BCK-algebras, Proceedings of DMTCS'01: Combinatorics, Computability and Logic, Springer, London, 2001, 97-114.
[7] G. Georgescu and A. Iorgulescu, Pseudo-BL algebras: a noncommutative extension of BL-algebras, Abstracts of The Fifth International Conference FSTA 2000, Slovakia, February 2000, 90-92.
[8] G. Georgescu and A. Iorgulescu, Pseudo-MV algebras: a noncommutative extension of MV-algebras, The Proceedings The Fourth International Symposium on Economic Informatics, INFOREC Printing House, Bucharest, Romania, May (1999), 961-968.
[9] A. Iorgulescu, Algebras of logic as BCK algebras, Editura ASE, Bucharest, 2008.
[10] K. Iséki, An algebra related with a propositional calculus, Proc. Japan. Academy 42 (1966), 26-29. doi: 10.3792/pja/1195522171
[11] Y.B. Jun, H.S. Kim and J. Neggers, On pseudo-BCI ideals of pseudo BCI-algebras, Mat. Vesnik 58 (2006), 39-46.
[12] K.J. Lee and C.H. Park, Some ideals of pseudo-BCI algebras, J. Appl. Math. & Informatics 27 (2009), 217-231.
[13] A. Wroński, BCK-algebras do not form a variety, Math. Japon. 28 (1983), 211-213.