ArticleOriginal scientific text
Title
Polynomials of multipartitional type and inverse relations
Authors 1, 1
Affiliations
- University of Science and Technology Houari Boumediene, USTHB, Faculty of Mathematics, P.B. 32 El Alia, 16111, Algiers, Algeria
Abstract
Chou, Hsu and Shiue gave some applications of Faà di Bruno's formula to characterize inverse relations. Our aim is to develop some inverse relations connected to the multipartitional type polynomials involving to binomial type sequences.
Keywords
Bell polynomials, inverses relations, polynomials of multipartitional type, binomial type sequences
Bibliography
- [1] H. Belbachir, S. Bouroubi and A. Khelladi, Connection between ordinary multinomials, generalized Fibonacci numbers, partial Bell partition polynomials and convolution powers of discrete uniform distribution, Ann. Math. Inform. 35 (2008), 21-30.
- [2] H. Belbachir, Determining the mode for convolution powers of discrete uniform distribution, Probability in the Engineering and Informational Sciences 25 (2011), 469-475. doi: 10.1017/S0269964811000131
- [3] E.T. Bell, Exponential polynomials, Ann. Math. 35 (1934), 258-277. doi: 10.2307/1968431
- [4] W.S. Chou, L.C. Hsu and P.J.S. Shiue, Application of Faà di Bruno's formula in characterization of inverse relations, J. Comput. Appl. Math. 190 (2006), 151-169. doi: 10.1016/j.cam.2004.12.041
- [5]L. Comtet, Advanced Combinatorics (Dordrecht, Netherlands, Reidel, 1974). doi: 10.1007/978-94-010-2196-8
- [6] M. Mihoubi, Bell polynomials and binomial type sequences, Discrete Math. 308 (2008), 2450-2459. doi: 10.1016/j.disc.2007.05.010
- [7] M. Mihoubi, Bell polynomials and inverse relations, J. Integer Seq. 13 (2010), Article 10.4.5.
- [8] M. Mihoubi, The role of binomial type sequences in determination identities for Bell polynomials, to appear in Ars Combin., Preprint available at online: http://arxiv.org/abs/0806.3468v1.
- [9] J. Riordan, Combinatorial Identities (Huntington, NewYork, 1979).
- [10] S. Roman, The Umbral Calculus (New York: Academic Press, 1984).