Czasopismo
Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Warianty tytułu
Języki publikacji
Abstrakty
Chou, Hsu and Shiue gave some applications of Faà di Bruno's formula to characterize inverse relations. Our aim is to develop some inverse relations connected to the multipartitional type polynomials involving to binomial type sequences.
Kategorie tematyczne
Rocznik
Tom
Numer
Strony
185-199
Opis fizyczny
Daty
wydano
2011
otrzymano
2011-02-24
poprawiono
2011-09-06
Twórcy
autor
- University of Science and Technology Houari Boumediene, USTHB, Faculty of Mathematics, P.B. 32 El Alia, 16111, Algiers, Algeria
autor
- University of Science and Technology Houari Boumediene, USTHB, Faculty of Mathematics, P.B. 32 El Alia, 16111, Algiers, Algeria
Bibliografia
- [1] H. Belbachir, S. Bouroubi and A. Khelladi, Connection between ordinary multinomials, generalized Fibonacci numbers, partial Bell partition polynomials and convolution powers of discrete uniform distribution, Ann. Math. Inform. 35 (2008), 21-30.
- [2] H. Belbachir, Determining the mode for convolution powers of discrete uniform distribution, Probability in the Engineering and Informational Sciences 25 (2011), 469-475. doi: 10.1017/S0269964811000131
- [3] E.T. Bell, Exponential polynomials, Ann. Math. 35 (1934), 258-277. doi: 10.2307/1968431
- [4] W.S. Chou, L.C. Hsu and P.J.S. Shiue, Application of Faà di Bruno's formula in characterization of inverse relations, J. Comput. Appl. Math. 190 (2006), 151-169. doi: 10.1016/j.cam.2004.12.041
- [5]L. Comtet, Advanced Combinatorics (Dordrecht, Netherlands, Reidel, 1974). doi: 10.1007/978-94-010-2196-8
- [6] M. Mihoubi, Bell polynomials and binomial type sequences, Discrete Math. 308 (2008), 2450-2459. doi: 10.1016/j.disc.2007.05.010
- [7] M. Mihoubi, Bell polynomials and inverse relations, J. Integer Seq. 13 (2010), Article 10.4.5.
- [8] M. Mihoubi, The role of binomial type sequences in determination identities for Bell polynomials, to appear in Ars Combin., Preprint available at online: http://arxiv.org/abs/0806.3468v1.
- [9] J. Riordan, Combinatorial Identities (Huntington, NewYork, 1979).
- [10] S. Roman, The Umbral Calculus (New York: Academic Press, 1984).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1182