PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2011 | 31 | 2 | 127-145
Tytuł artykułu

On L-ideal-based L-zero-divisor graphs

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In a manner analogous to a commutative ring, the L-ideal-based L-zero-divisor graph of a commutative ring R can be defined as the undirected graph Γ(μ) for some L-ideal μ of R. The basic properties and possible structures of the graph Γ(μ) are studied.
Twórcy
  • Faculty of Mathematical Science, University of Guilan, P.O. Box 1914 Rasht, Iran
  • Faculty of Mathematical Science, University of Guilan, P.O. Box 1914 Rasht, Iran
Bibliografia
  • [1] D.F. Anderson and P.S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra 217 (1999), 434-447. doi: 10.1006/jabr.1998.7840
  • [2] D.F. Anderson and S.B. Mulay, On the diameter and girth of a zero-divisor graph, J. Pure App. Algebra 210 (2) (2007), 543-550. doi: 10.1016/j.jpaa.2006.10.007
  • [3] D.F. Anderson and A. Badawi, On the zero-divisor graph of a ring, Comm. Algebra 36 (2008), 3073-3092. doi: 10.1080/00927870802110888
  • [4] M. Axtell, J. Coykendall and J. Stickles, Zero-divisor graphs of polynomial and power series over commutative rings, Comm. Algebra 33 (2005), 2043-2050. doi:10.1081/AGB-200063357
  • [5] D.D. Anderson and S. Valdes-Leon, Factorization in commutative rings with zero-divisors, Rocky Mountain J. of Math. 26 (1996), 439-480. doi: 10.1216/rmjm/1181072068
  • [6] I. Beck, Coloring of commutative rings, J. Algebra 116 (1988) 208-226. doi: 10.1016/0021-8693(88)90202-5
  • [7] S. Ebrahimi Atani, An ideal-based zero-divisor graph of a commutative semiring, Glasnik Matematicki 44 (64) (2009), 141-153. doi: 10.3336/gm.44.1.07
  • [8] I. Goguen, L-fuzzy sets, J. Math. Appl. 18 (1967), 145-174.
  • [9] K.H. Lee and J.N. Mordeson, Fractionary fuzzy ideals and Dedekind domains, Fuzzy Sets and Systems 99 (1998), 105-110. doi: 10.1016/S0165-0114(97)00012-2
  • [10] W.J. Liu, Operation on fuzzy ideals, Fuzzy Sets and Systems 11 (1983), 31-41.
  • [11] L. Martinez, Prime and primary L-fuzzy ideals of L-fuzzy rings, Fuzzy Sets and Systems 101 (1999), 489-494. doi: 10.1016/S0165-0114(97)00114-0
  • [12] J.N. Mordeson and D.S. Malik, Fuzzy Commutative Algebra, J. World Scientific Publishing, Singapore, 1998.
  • [13] S.B. Mulay, Cycles and symmetries of zero-divisors, Comm. Algebra 30 (7) (2002), 3533-3558. doi: 10.1081/AGB-120004502
  • [14] A. Rosenfeld, Fuzzy groups, J. Math. Appl. 35 (1971), 512-517.
  • [15] S. Redmond, The zero-divisor graph of a non-commutative ring, International J. Commutative rings 1 (4) (2002), 203-211.
  • [16] S. Redmond, Central sets and radii of the zero-divisor graphs of commutative rings, Comm. Algebra 34 (2006), 2389-2401. doi: 10.1080/00927870600649103
  • [17] A. Rosenfeld and Fuzzy graphs, In fuzzy sets and their applications to Cognitive and Decision Processes, Zadeh L.A, Fu K.S., Shimura M., Eds, Academic Press, New York (1975), 77-95.
  • [18] F.I. Sidky, On radicals of fuzzy submodules and primary fuzzy submodules, Fuzzy Sets and Systems 119 (2001), 419-425. doi: 10.1016/S0165-0114(99)00101-3
  • [19] R.T Yeh and S.Y. Banh, Fuzzy relations, fuzzy graphs and their applications to clustering analysis, In Fuzzy sets and their applications to Cognitive and Decision Processes, Zadeh L.A, Fu K.S., Shimura M., Eds, Academic Press, New York (1975), 125-149.
  • [20] L.A. Zadeh, Fuzzy sets, Inform and Control 8 (1965), 338-353. doi: 10.1016/S0019-9958(65)90241-X
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1178
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.