ArticleOriginal scientific text

Title

On congruence distributivity of ordered algebras with constants

Authors 1, 2

Affiliations

  1. Érd, Aradi u. 69/A, Hungary 2030
  2. University of Szeged, Bolyai Institute, Szeged, Aradi vértanúk tere 1, Hungary 6720

Abstract

We define the order-congruence distributivity at 0 and order- congruence n-distributivity at 0 of ordered algebras with a nullary operation 0. These notions are generalizations of congruence distributivity and congruence n-distributivity. We prove that a class of ordered algebras with a nullary operation 0 closed under taking subalgebras and direct products is order-congruence distributive at 0 iff it is order-congruence n-distributive at 0. We also characterize such classes by a Mal'tsev condition.

Keywords

ordered algebra, n-distributivity, distributivity, Mal'tsev condition

Bibliography

  1. G. Birkhoff, On the structure of abstract algebras, Proc. Cambridge Phil. Soc. 31 (1935), 433-454. doi: 10.1017/S0305004100013463
  2. S.L. Bloom, Varieties of ordered algebras, J. Comput. System Sci. 13 (1976), 200-212. doi: 10.1016/S0022-0000(76)80030-X
  3. I. Chajda, Congruence distributivity in varieties with constants, Arch. Math. (Brno) 22 (1986), 121-124.
  4. G. Czédli, On the lattice of congruence varieties of locally equational classes, Acta Sci. Math. (Szeged) 41 (1979), 39-45.
  5. G. Czédli, Notes on congruence implication, Archivum Math. (Brno) 27 (1991), 149-153.
  6. G. Czédli and E.K. Horváth, All congruence lattice identities implying modularity have Mal'tsev conditions, Algebra Universalis 50 (2003), 69-74. doi: 10.1007/s00012-003-1818-0
  7. G. Czédli, E.K. Horváth, P. Lipparini, Optimal Mal'tsev conditions for congruence modular varieties, Algebra Universalis 53 (2005), 267-279. doi: 10.1007/s00012-005-1893-5
  8. G. Czédli and A. Lenkehegyi, On congruence n-distributivity of ordered algebras, Acta Math. (Hung.) 41 (1983), 17-26. doi: 10.1007/BF01994057
  9. R. Freese and B. Jónsson, Congruence modularity implies the Arguesian identity, Algebra Universalis 6 (2) (1976), 225-228. doi: 10.1007/BF02485830
  10. R. Freese and R. McKenzie, Commutator theory for congruence modular varieties, London Mathematical Society Lecture Note Series, 125, Cambridge University Press, Cambridge 1987.
  11. G. Grätzer, Universal Algebra, Springer-Verlag (Berlin-Heidelberg-New York 1979).
  12. C. Herrmann and A.P. Huhn, Lattices of normal subgroups which are generated by frames, Lattice Theory, Colloq. Math. Soc. J. Bolyai, North-Holland 14 (1976), 97-136.
  13. A.P. Huhn, Schwach distributive Verbände I, Acta Sci. Math. (Szeged) 33 (1972), 297-305.
  14. A.P. Huhn, Two notes on n-distributive lattices, Lattice Theory, Colloq. Math. Soc. J. Bolyai, North-Holland 14 (1976), 137-147.
  15. A.P. Huhn, n-distributivity and some questions of the equational theory of lattices, Contributions to Universal Algebra, Colloq. Math. Soc. J. Bolyai North-Holland 17 (1977), 177-178.
  16. B. Jónsson, Congruence varieties, Algebra Universalis 10 (1980), 355-394. doi: 10.1007/BF02482916
  17. J.B. Nation, Varieties whose congruences satisfy certain lattice identities, Algebra Univ. 4 (1974), 78-88.
Pages:
47-59
Main language of publication
English
Received
2010-02-03
Accepted
2010-07-10
Published
2011
Exact and natural sciences