ArticleOriginal scientific text
Title
Two constructions of De Morgan algebras and De Morgan quasirings
Authors 1, 2
Affiliations
- Department of Algebra and Geometry, Palacky University Olomouc, Trida 17. listopadu 12, 771 46 Olomouc, Czech Republic
- Institute of Discrete Mathematics and Geometry, Vienna University of Technology, Wiedner Hauptstraße 8-10/104, 1040 Vienna, Austria
Abstract
De Morgan quasirings are connected to De Morgan algebras in the same way as Boolean rings are connected to Boolean algebras. The aim of the paper is to establish a common axiom system for both De Morgan quasirings and De Morgan algebras and to show how an interval of a De Morgan algebra (or De Morgan quasiring) can be viewed as a De Morgan algebra (or De Morgan quasiring, respectively).
Keywords
De Morgan algebra, De Morgan quasiring, D-algebra, interval algebra, Boolean element
Bibliography
- Birkhoff, G.: Lattice Theory (3rd ed.), Publ. Amer. Math. Soc., Providence, R. I., 1967.
- Chajda I., Eigenthaler, G.: A note on orthopseudorings and Boolean quasirings, Österr. Akad. Wiss. Math.-Natur. Kl., Sitzungsberichte Abt. II, 207] (1998), 83-94.
- Chajda, I., Eigenthaler, G.: De Morgan quasirings, Contributions to General Algebra 18] (2008), Proceedings of the Klagenfurt Conference 2007, Verlag J. Heyn, Klagenfurt, 17-21.
- Chajda, I., Kühr, J.: A note on interval MV-algebras, Math. Slovaca 56] (2006), 47-52.
- Chajda, I., Länger, H.: A common generalization of ortholattices and Boolean quasirings, Demonstratio Mathem. 15] (2007), 769-774.
- Dobbertin, H.: Note on associative Newman algebras, Algebra Universalis 9] (1979), 396-397.
- Dorninger, D., Länger, H., Mączyński, M.: The logic induced by a system of homomorphisms and its various algebraic characterizations. Demonstratio Math. 30] (1977), 215-232.
- Dorninger, D., Länger, H., Mączyński, M.: Lattice properties of ring-like quantum logics, Intern. J. Theor. Phys. 39] (2000), 1015-1026.
- Droste, M., Kuich, W., Rahonis, G.: Multi-valued MSO logics over words and trees, Fundamenta Informaticae 84] (2008), 305-327.
- Dvurečenskij, A., Hyčko, M.: Algebras on subintervals of BL-algebras, pseudo-BL-algebras and bounded residuated Rl-monoids, Math. Slovaca 56] (2006), 135-144.