ArticleOriginal scientific text

Title

On the matrix negative Pell equation

Authors 1, 1

Affiliations

  1. Faculty of Mathematics, Computer Science and Econometrics, University of Zielona Góra, prof. Z. Szafrana 4a, 65-516 Zielona Góra, Poland

Abstract

Let N be a set of natural numbers and Z be a set of integers. Let M₂(Z) denotes the set of all 2x2 matrices with integer entries. We give necessary and suficient conditions for solvability of the matrix negative Pell equation (P) X² - dY² = -I with d ∈ N for nonsingular X,Y belonging to M₂(Z) and his generalization (Pn) i=1nXi-di=1nY²i=-I with d ∈ N for nonsingular Xi,YiM(Z), i=1,...,n.

Keywords

the matrix negative Pell equation, powers matrices

Bibliography

  1. Z. Cao and A. Grytczuk, Fermat's type equations in the set of 2x2 integral matrices, Tsukuba J. Math. 22 (1998), 637-643.
  2. R.Z. Domiaty, Solutions of x⁴+y⁴=z⁴ in 2x2 integral matrices, Amer. Math. Monthly (1966) 73, 631.
  3. A. Grytczuk, Fermat's equation in the set of matrices and special functions, Studia Univ. Babes-Bolyai, Mathematica 4 (1997), 49-55 .
  4. A. Grytczuk, On a conjecture about the equation Amx+Amy=Amz, Acta Acad. Paed. Agriensis, Sectio Math. 25 (1998), 61-70.
  5. A. Grytczuk and J. Grytczuk, Ljunggren's trinomials and matrix equation Ax+Ay=Az, Tsukuba J. Math. 2 (2002), 229-235.
  6. A. Grytczuk and K. Grytczuk, Functional recurences, 115-121 in: Applications of Fibonacci Numbers, Ed. E. Bergum et als, by Kluwer Academic Publishers 1990.
  7. A. Grytczuk, F. Luca and M. Wójtowicz, The negative Pell equation and Pythagorean triples, Proc. Japan Acad. 76 (2000), 91-94.
  8. A. Khazanov, Fermat's equation in matrices, Serdica Math. J. 21 (1995), 19-40.
  9. I. Kurzydło, Explicit form on a GLW criterion for solvability of the negative Pell equation - Submitted.
  10. M. Le and C. Li, On Fermat's equation in integral 2x2 matrices, Period. Math. Hung. 31 (1995), 219-222.
  11. Z. Patay and A. Szakacs, On Fermat's problem in matrix rings and groups, Publ. Math. Debrecen 61 (3-4) (2002), 487-494.
  12. H. Qin, Fermat's problem and Goldbach problem over Mn(Z), Linear Algebra App., 236 (1996), 131-135.
  13. P. Ribenboim, 13 Lectures on Fermat's Last Theorem (New York: Springer-Verlag) 1979.
  14. N. Vaserstein, Non-commutative Number Theory, Contemp. Math. 83 (1989), 445-449.
Pages:
35-45
Main language of publication
English
Received
2009-02-05
Accepted
2009-03-10
Published
2009
Exact and natural sciences