ArticleOriginal scientific text
Title
On the matrix negative Pell equation
Authors 1, 1
Affiliations
- Faculty of Mathematics, Computer Science and Econometrics, University of Zielona Góra, prof. Z. Szafrana 4a, 65-516 Zielona Góra, Poland
Abstract
Let N be a set of natural numbers and Z be a set of integers. Let M₂(Z) denotes the set of all 2x2 matrices with integer entries. We give necessary and suficient conditions for solvability of the matrix negative Pell equation (P) X² - dY² = -I with d ∈ N for nonsingular X,Y belonging to M₂(Z) and his generalization (Pn) with d ∈ N for nonsingular , i=1,...,n.
Keywords
the matrix negative Pell equation, powers matrices
Bibliography
- Z. Cao and A. Grytczuk, Fermat's type equations in the set of 2x2 integral matrices, Tsukuba J. Math. 22 (1998), 637-643.
- R.Z. Domiaty, Solutions of x⁴+y⁴=z⁴ in 2x2 integral matrices, Amer. Math. Monthly (1966) 73, 631.
- A. Grytczuk, Fermat's equation in the set of matrices and special functions, Studia Univ. Babes-Bolyai, Mathematica 4 (1997), 49-55 .
- A. Grytczuk, On a conjecture about the equation
, Acta Acad. Paed. Agriensis, Sectio Math. 25 (1998), 61-70. - A. Grytczuk and J. Grytczuk, Ljunggren's trinomials and matrix equation
, Tsukuba J. Math. 2 (2002), 229-235. - A. Grytczuk and K. Grytczuk, Functional recurences, 115-121 in: Applications of Fibonacci Numbers, Ed. E. Bergum et als, by Kluwer Academic Publishers 1990.
- A. Grytczuk, F. Luca and M. Wójtowicz, The negative Pell equation and Pythagorean triples, Proc. Japan Acad. 76 (2000), 91-94.
- A. Khazanov, Fermat's equation in matrices, Serdica Math. J. 21 (1995), 19-40.
- I. Kurzydło, Explicit form on a GLW criterion for solvability of the negative Pell equation - Submitted.
- M. Le and C. Li, On Fermat's equation in integral 2x2 matrices, Period. Math. Hung. 31 (1995), 219-222.
- Z. Patay and A. Szakacs, On Fermat's problem in matrix rings and groups, Publ. Math. Debrecen 61 (3-4) (2002), 487-494.
- H. Qin, Fermat's problem and Goldbach problem over
, Linear Algebra App., 236 (1996), 131-135. - P. Ribenboim, 13 Lectures on Fermat's Last Theorem (New York: Springer-Verlag) 1979.
- N. Vaserstein, Non-commutative Number Theory, Contemp. Math. 83 (1989), 445-449.