ArticleOriginal scientific text

Title

Horizontal sums of basic algebras

Authors 1

Affiliations

  1. Department of Algebra and Geometry, Palacký University Olomouc, Tomkova 40, 779 00 Olomouc, Czech Republic

Abstract

The variety of basic algebras is closed under formation of horizontal sums. We characterize when a given basic algebra is a horizontal sum of chains, MV-algebras or Boolean algebras.

Keywords

Basic algebra, horizontal sum, chain basic algebra, MV-algebra, Boolean algebra

Bibliography

  1. I. Chajda, Lattices and semilattices having an antitone involution in every upper interval, Comment. Math. Univ. Carolinae 44 (2003), 577-585.
  2. I. Chajda, R. Halaš and J. Kühr, Semilattice Structures, Heldermann Verlag, Lemgo (Germany), 2007, 228pp, ISBN 978-3-88538-230-0.
  3. I. Chajda, R. Halaš and J. Kühr, Many-valued quantum algebras, Algebra Universalis 60 (2009), 63-90. %DOI 10.1007/s00012-008-2086-9.
  4. I. Chajda and H. Länger, A characterization of horizontal sums of Boolean rings, Contributions to General Algebra 18, Proceedings of the conference Arbeitstagung Allgemeine Algebra 73, Klagenfurt 2007, Verlag J. Heyn, Klagenfurt (2007), 23-30.
  5. A. Dvurečenskij and S. Pulmannová, New Trends in Quantum Structures, Kluwer Acad. Publ., Dordrecht 2000.
  6. D.J. Foulis and M.K. Bennett, Effect algebras and unsharp quantum logic, Found. Phys. 24 (1994), 1325-1346.
  7. Z. Riečanová, Generalization of blocks for D-lattices and lattice-ordered effect algebras, Intern. J. Theor. Phys. 39 (2000), 231-237.
  8. N. Vaserstein, Non-commutative number theory, Contemp. Math. 83 (1989), 445-449
Pages:
21-33
Main language of publication
English
Received
2008-09-26
Accepted
2008-11-11
Published
2009
Exact and natural sciences