PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2007 | 27 | 2 | 235-243
Tytuł artykułu

Retracts and Q-independence

Autorzy
Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A non-empty set X of a carrier A of an algebra A is called Q-independent if the equality of two term functions f and g of the algebra A on any finite system of elements a₁,a₂,...,aₙ of X implies f(p(a₁),p(a₂),...,p(aₙ)) = g(p(a₁),p(a₂),...,p(aₙ)) for any mapping p ∈ Q. An algebra B is a retract of A if B is the image of a retraction (i.e. of an idempotent endomorphism of B). We investigate Q-independent subsets of algebras which have a retraction in their set of term functions.
Twórcy
  • Opole University of Technology, Waryńskiego 4, 45-047 Opole, Poland
Bibliografia
  • [1] R. Balbes and Ph. Dwinger, Distributive Lattices, Univ. Missouri Press, Columbia, Miss. 1974.
  • [2] S. Burris and H.P. Sankappanavar, A Course in Universal Algebra, The Millennium Edition 2000.
  • [3] C.C. Chen and G. Grätzer, Stone lattices. I: Construction theorems, Can. J. Math. 21 (1969), 884-894.
  • [4] A. Chwastyk and K. Głazek, Remarks on Q-independence of Stone algebras, Math. Slovaca 56 (2) (2006), 181-197.
  • [5] K. Głazek, General notions of independence, pp. 112-128 in 'Advances in Algebra', World Scientific, Singapore 2003.
  • [6] K. Głazek, Independence with respect to family of mappings in abstract algebras, Dissertationes Math. 81 (1971).
  • [7] K. Głazek, Some old and new problems in the independence theory, Coll. Math. 42 (1979), 127-189.
  • [8] K. Głazek and S. Niwczyk, A new perspective on Q-independence, General Algebra and Applications, Shaker Verlag, Aacken 2000.
  • [9] K. Golema-Hartman, Exchange property and t-independence, Coll. Math. 36 (1976), 181-186.
  • [10] G. Grätzer, A new notion of independence in universal algebras, Colloq. Math. 17 (1967), 225-234.
  • [11] G. Grätzer, General Lattice Theory, Academic Press, New York 1978.
  • [12] G. Grätzer, Universal Algebra, second edition, Springer-Verlag, New York 1979.
  • [13] E. Marczewski, A general scheme of the notions of independence in mathematics, Bull. Acad. Polon. Sci. (Ser. Sci. Math. Astr. Phys.) 6 (1958), 731-738.
  • [14] E. Marczewski, Concerning the independence in lattices, Colloq. Math. 10 (1963), 21-23.
  • [15] E. Marczewski, Independence in algebras of sets and Boolean algebras, Fund. Math. 48 (1960), 135-145.
  • [16] E. Marczewski, Independance with respect to a family of mappings, Colloq. Math. 20 (1968), 11-17.
  • [17] J. Płonka and W. Poguntke, T-independence in distributive lattices, Colloq. Math. 36 (1976), 171-175.
  • [18] J. Schmidt, Eine algebraische Äquivalenz zum Auswahlaxiom, Fund. Math. 50 (1962), 485-496.
  • [19] S. Świerczkowski, Topologies in free algebras, Proc. London Math. Soc. 14 (3) (1964), 566-576.
  • [120] G. Szász, Marczewski independence in lattices and semilattices, Colloq. Math. 10 (1963), 15-23.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1128
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.