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Abstract

We show that for an arbitrary Set-endofunctor T the generalized
membership function given by a sub-cartesian transformation µ from T

to the filter functor F can be alternatively defined by the collection of
subcoalgebras of constant T -coalgebras. Sub-natural transformations
ε between any two functors S and T are shown to be sub-cartesian if
and only if they respect µ. The class of T -coalgebras whose structure
map factors through ε is shown to be a covariety if ε is a natural and
sub-cartesian mono-transformation.
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1. Set-functors

Our interest in Set-Functors arises from their use as signatures of algebras
or coalgebras. A Set-functor T associates with each set X a set T (X) and
with each map f : X → Y between sets a map Tf : T (X) → T (Y ) so that
identities and function compositions are preserved, i.e. T idX = idT (X) and
T (g ◦ f) = Tg ◦ Tf whenever f : X → Y and g : Y → Z.

In the context of universal algebra, the most important examples are
given by the so called polynomial functors. Starting with a sequence of
natural numbers ∆ = (ni)i∈I (called a similarity type) define T∆(X) :=
]i∈IX

ni for each set X and put (Tf)(x1, . . . , xni
) = (f(x1), . . . , f(xni

)) for
each (x1, . . . , xni

) ∈ Xni . Then a universal algebra of signature ∆ on a set
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A is just a map fA : T (A) → A, and a homomorphism to another algebra
fB : T (B) → B is just a map ϕ : A → B with ϕ ◦ fA = Tϕ ◦ fB.

1.1. Coalgebraic type functors

In the dual context of coalgebras a wide range of functors is of interest in
order to model automata, transition systems, probabilistic and nondetermin-
istic systems, processes or even topological spaces. Much of the (co)algebraic
theory hinges on particular preservation properties of the Set-functors defin-
ing their signature. Examples of functors, acting on a set X and an arbitrary
map f : X → Y are:

• the power set functor P, where P(X) is the power set of X and (Pf)(U)
:= f [U ] := {f(u) | u ∈ U},

• the filter functor F with F(X) the set of all filters on X and (Ff)(G) :=
{V ⊆ Y | f−1(V ) ∈ G},

• the distribution functor, where D(X) is the set of all probability distri-
butions on X and (Df)(σ)(y) =

∑
f(x)=y σ(x) ,

• the automaton functor A(X) = D×XE where E is a fixed input set, D

a fixed output set and XE the set of all maps from E to X,

• the stream functor (−)∞, where X∞ is the set of all infinite lists (streams)
of elements of X,

• the binary-tree-functor where BinTree(X) is the set of all binary trees
with leafs from X, or, more general,

• the free-algebra-functor for a variety V, where FV(X) is the free
V-algebra over X and FVf is the homomorphic extension of f .

Subfunctors of some of the above functors are of interest, too, such as e.g.

• the list functor (−)? where X? is the set of all finite lists (words) of
elements of X,

• the bounded powerset functors Pκ for any cardinal κ, yielding only the
subsets of cardinality below κ,

• the (−)32 -functor, see [1], where (X)3
2 :={(x1, x2, x3)∈X3 | |x1, x2, x3|≤2}

and maps are extended componentwise.
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Regarding the coalgebraic theories in which these functors occur, certain
preservation properties play a fundamental role. In particular, much of the
early literature in coalgebra assumed that the type functor T should preserve
weak pullbacks, see [9]. Here a weak pullback is a weak limit of two arrows
with common target. It was then shown in [7] that a Set-functor T weakly
preserves pullbacks iff it weakly preserves kernels and preimages. (Recall
that a kernel is the pullback of an arrow with itself and a preimage, also
known as inverse image, is a pullback along a mono, see [2].)

1.2. Container functors and their membership

In computer science, typical functors arise as container datatypes (arrays,
lists, trees, streams), where T (X) can be interpreted as the set of all con-
tainers of a certain type with elements from X. Given an item u in T (X),
it is legitimate to ask for the set of all elements that are present in the con-
tainer represented by u ∈ T (X). A natural way to formalize this would be
to ask for the smallest U ⊆ X such that u ∈ T (U). But one encounters two
difficulties:

• Firstly, T (U) need not be a subset of T (X) even when U ⊆ X, unless
the functor is standard. However, we can replace T (U) by (T ⊆X

U )[T (U)]
which is the image of T (U) under the T -image of the inclusion map
⊆X

U . Now (T ⊆X
U )[T (U)] is a subset of T (X) and it is equal to T (U),

whenever T is standard. The filter functor F provides an example of a
functor, which is not standard, and preserves weak pullbacks, but not
infinite intersections, see [4].

• Secondly, a smallest U with the required properties need not exist. Thus
the question for arbitrary elements u ∈ T (X) need not have a unique
answer, but rather a collection of possible answers. Fortunately, this
collection is closed under supersets and finite intersections, i.e. it is a
filter.

To be precise, the following was defined in [5] for an arbitrary Set-functor
T and an arbitrary element u ∈ T (X) :

µT
X(u) := {U ⊆ X | u ∈ (T ⊆X

U )[T (U)] }

and it was shown that µT , for an arbitrary Set-functor T , is a transformation
to the filter functor. µT is not a natural transformation in general, but it is
always sub-natural, even sub-cartesian, terms which are defined below. In
fact, it was proved there:
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Theorem 1.1. For any Set-endofunctor T

• µT is the largest sub-cartesian transformation from T to the filter functor,

• µT is natural if and only if T (weakly) preserves preimages.

Here, a transformation σ between two functors F and G is just a collection
of maps σX : F (X) → G(X) for each set X. The transformation is natural,
if for each map f : X → Y the following diagram commutes:

F (X)
σX

//

Ff

��

G(X)

Gf

��

F (Y )
σY

// G(Y )

σ is called sub-natural, when this square is required to commute only for f

injective and is called sub-cartesian, if for each injective f the above diagram
is a preimage diagram, i.e. a pullback.

In the above sense then, µ provides a generalized membership relation
for arbitrary functors T , assigning to each container u ∈ T (X) its filter of
elements.

The straightforward definition σT
X(u) :=

⋂
µT

X(u) always yields the
largest sub-natural transformation from T to the powerset functor P. If
there exists any subcartesian transformation at all from T to P, then σ itself
is sub-cartesian, and this is the case if and only if T preserves intersections,
see [5].

1.3. Sub-cartesian means preservation of membership

We shall provide a criterion for determining, when a general sub-natural
transformation ε between any two functors is actually sub-cartesian. For its
proof, we shall require the following easy lemma, see e.g. [8]:

Lemma 1.2. In any category, suppose that the following diagram commutes.

1. If (A) and (B) are pullbacks, then so is the perimeter (A,B).

2. If (A,B) is a pullback and f,g are jointly monic, then (A) is a pullback.
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◦ //

��

(A)

◦
f

//

g
��

(B)

◦

��

◦ // ◦ // ◦

With that we can prove the following characterization:

Theorem 1.3. Let S and T be Set-endofunctors. A sub-natural transfor-
mation ε : S

·
→ T is sub-cartesian, if and only if it commutes with the

generalized membership µ:

S ε

·
//

µS
��

??
??

??
? T

µT
����

��
��

�

F

Proof. Let ε be sub-natural, then for any U ⊆ X the following diagram
commutes.

S(U)
� _

S⊆X

U

��

εU
// T (U)

� _

T⊆X

U

��

µT

U
// F(U)

� _

F⊆X

U

��

S(X)
εX

// T (X)
µT

X

// F(X)

By assumption, µT
U ◦ εU = µS

U and µT
X ◦ εX = µS

X , so by Theorem 1.1, the
perimeter of the diagram is a pullback. Lemma 1.2, therefore guarantees
that the left square is a pullback, too, which means that ε is sub-cartesian.

For the converse assume that ε is sub-cartesian, we need to show µS =
µT ◦ ε. From the first assertion of Lemma 1.2 one obtains that µT ◦ ε is a
sub-cartesian transformation from S to the filter functor F. Therefore, from
the first item of Theorem 1.1, we obtain the inclusion µT

X(εX (u)) ⊆ µS
X(u).

For the reverse inclusion, let any U ∈ µS
X(u) be given, then by definition

of µ there exists v ∈ S(U) with (S ⊆X
U )(v) = u. It follows that εX(u) =

εX ◦ (S ⊆X
U )(v) = (T ⊆X

U ) ◦ εU (v) ∈ (T ⊆X
U )[T (U)], hence U ∈ µT

X(εX(u)).
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2. Coalgebras

An important property true in the category of sets is that every epi-mono-
square has a (necessarily unique) diagonal. That is, given a square m ◦ f =
g ◦ e, where e is epi and m mono, there is a unique d such that d ◦ e = f and
m ◦ d = g.

◦ e
// //

f
��

◦
g

��

d

~~}
}

}
}

◦ //
m

// ◦

Let T : Set → Set be any functor. By a T -coalgebra we understand a
pair A = (A,αA) consisting of a set A and a map αA : A → T (A). A
homomorphism ϕ to another T -coalgebra B = (B,αB) is just a map making
the obvious diagram commute:

A
ϕ

//

αA

��

B

αB

��

T (A)
Fϕ

// T (B)

The class of all T -coalgebras with homomorphisms as defined above forms
a category SetT , in which all colimits exist. In fact, the forgetful functor,
associating with a coalgebra A = (A,αA) its base set A, creates and reflects
colimits. Since in any category a morphism ϕ : A → B is epi if and only if
the pushout with itself is the identity idB , this implies that ϕ is epi in SetT

if and only if it is epi in Set, i.e. surjective, see [9]. Monos in SetT , however,
need not be injective. Rather, they are injective iff they are regular in SetT ,
see [7].

Given a homomorphism ϕ as above, the image factorization in Set of ϕ

as ϕ =⊆ ◦ϕ′ yields an image factorization of ϕ in SetT . This is because any
Set-functor T preserves (nonempty) monos, so the factorization of ϕ in Set

becomes an epi-mono-square. Now, the structure map on the image ϕ[A] of
A under ϕ is provided by the unique diagonal:
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A

αA

��

ϕ′

// // ϕ[A] �
�

//

��
�

�

�
B

αB

��

T (A)
Tϕ′

// T (ϕ[A])
T⊆

// T (B)

A coalgebra U = (U,αU ) is called subcoalgebra of A = (A,αA), provided
that U ⊆ A and the structure map αU is the restriction of αA in the sense
that the embedding ⊆A

U is a homomorphism:

U
� �

⊆A

U
//

αU

��
�

�

� A

αA

��

T (U) //
T⊆A

U
// T (A)

Not every subset U of A supports a subcoalgebra structure, but if it does,
the structure map αU is uniquely determined. By abuse of notation, we
therefore shall call such a subset U a subcoalgebra of A.

Finally, the sum
∑

i∈I Ai of a family (Ai)i∈I of coalgebras has as carrier
set the sum (in Set) of the carriers of the Ai, which is the disjoint union
]i∈IAi and as structure map the disjoint union of the αAi

.

Given a class K of coalgebras, we denote by S(K), H(K), resp. Σ(K) the
classes of all subcoalgebras, homomorphic images, resp. sums, of members
from K. A class of T -coalgebras closed under the operators S,H, and Σ is
called a covariety, and it is well known that for any class K of coalgebras,
the smallest covariety containing K is given by SHΣ(K) (see for instance[3],
where a Birkhoff-Theorem for covarieties is proved).

2.1. Membership through constant coalgebras

We now show that the membership transformation µ : T → F has an inter-
pretation in coalgebras. For an arbitrary set X and an arbitrary element
c ∈ T (X), let κc : X → T (X) be the map with constant value c and let
Kc

X = (X,κc) be the constant coalgebra on X with value c. Let Sub(Kc
X)

be the collection of subcoalgebras of Kc
X , then we have:

Proposition 2.1. µX(c) = Sub(Kc
X).
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Proof. For U ⊆ X we have:

U ≤ Kc
X ⇐⇒ ∃α : U → T (U) · (U,α) ≤ Kc

X

⇐⇒ ∃α : U → T (U) ·
(
T ⊆X

U

)
◦ α = κc◦ ⊆X

U

⇐⇒ κc[U ] ⊆
(
T ⊆X

U

)
[TU ]

⇐⇒ c ∈
(
T ⊆X

U

)
[T (U)]

⇐⇒ U ∈ µX(c).

The collection of all subcoalgebras of a fixed coalgebra is known to be closed
under finite intersections, see [6]. In the case of constant coalgebras, it
is immediately checked that supersets of subcoalgebras are subcoalgebras,
hence this proposition immediately shows that µ is indeed a transformation
to the filter functor.

2.2. ε-crisp coalgebras

In [10], Smith defines a Q-iterated function system (Q-IFS) as a Q-indexed
family of stochastic linear maps on a vector space R(X). Since each linear
map is determined by its restriction as Set-map α : X → R(X), a stochas-
tic linear map is given by any mapping from X to the set of probability
distributions on X, that is as a coalgebra of type D(X). A Q-IFS is there-
fore a Q-indexed family of probabilistic transition systems, that is any map
ρ : Q → D(X)X . Equivalently, ρ can be encoded in a map α : X → D(X)Q,
that is a single coalgebra of the Q-th power of the distribution functor.

Smith calls such an α crisp, if for each q ∈ Q there is some y ∈ X with
α(x)(q) = ŷ(x), where

ŷ(x) :=





1 if x = y

0 otherwise,

so ŷ is the trivial distribution giving y probability 1 and everything else
probability 0. He then proves that homomorphic images of crisp coalgebras
are crisp.

Here we show that the concept is meaningful for arbitrary functors
T serving as types of coalgebras, and that in a situation as above, crisp
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coalgebras even form a covariety. The key is observing that y 7→ ŷ is
a transformation between the (Q-th powers of) the identity functor I and
the functor D whose properties determine the closure properties of the class
of all crisp coalgebras. Thus, we shall define crispness with respect to a fixed
transformation ε from some functor S to T .

Definition 2.2. Let S and T be set-endofunctors and let ε : S → T be a
transformation, i.e. a collection of maps εX : S(X) → T (X), one for each set
X. A T -coalgebra A = (A,αA) will be called ε-crisp, provided its structure
map factors through εA. The structure of the class of all ε-crisp coalgebras
then depends on the properties of ε :

Theorem 2.3. Let ε : S → T be a natural and subcartesian mono-
transformation. Then the class of all ε-crisp coalgebras forms a covariety.

In fact, we shall give conditions on ε so that the class of ε-crisp coalgebras are
closed under sums, homomorphic images and subcoalgebras. The theorem
therefore follows from the following lemma:

Lemma 2.4. Let ε : S → T be a mono-transformation, and let Kε be the
class of all ε-crisp coalgebras.

1. Kε is closed under sums, if ε is subnatural.

2. Kε is closed under homomorphic images, if ε is natural.

3. Kε is closed under subcoalgebras, if ε is sub-cartesian.

Proof. Let A = (
∑

i∈I Ai, α) be the sum of the coalgebras Ai = (Ai, αi)i∈I

with the sum embeddings ei : Ai → A. If all Ai are ε-crisp, we have for each
i ∈ I the following diagram, where the perimeter commutes, since the ei are
homomorphisms and the lower square commutes since the ei are injective
and ε is assumed subnatural. We need to construct the indicated map σ.

Ai
ei

//

α′
A

��

αi

��

∑
Ai

σ

��
�

�

�

α

��

S(Ai)
Sei

//

εAi

��

S(
∑

Ai)

ε

��

T (Ai)
Tei

// T (
∑

Ai)
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Since
∑

i∈I Ai with the embeddings ei is the sum of the sets Ai in the
category Set, we obtain σ as the unique map making the upper rectangle
commute for each i ∈ I. A diagram chase yields εΣ ◦ σ ◦ ei = α ◦ ei for each
i, from which εΣ ◦ σ = α follows, as the sum embeddings are jointly epi.

Given an ε-crisp T -coalgebra A = (A,αA) and an epimorphism ϕ onto
a second T -coalgebra B = (B,αB), we obtain the diagram.

A
ϕ

// //

α′

��

αA

��

B

��
�

�

�

αB

��

S(A)
Sϕ

//

εA

��

S(B)

εB

��

T (A)
Tϕ

// T (B)

Again, the perimeter commutes, since ϕ is a homomorphism, and the lower
square does, since we now assume ε to be natural. Notice that αB ◦ ϕ =
εB ◦Sϕ◦α′ delineates an epi-mono-square, so σ can be obtained as its unique
diagonal.

Finally, assume that A = (A,αA) is a subcoalgebra of the ε-crisp
coalgebra B = (B,αB). In the diagram below, the lower square is a
preimage, and A with αA and α′

B◦ ⊆B
A presents a competitor to this limit,

thus yielding the required structure map σ : A → S(A).

A

��
�

�

�

αA

��

� � // B

α′
B

��

αB

��

S(A)

εA

��

� � // S(B)

εB

��

T (A) � � // T (B)

Now the case of [10] is captured easily, as εX : IQ → DQ where εX(τ)(q) =

τ̂(q), which inherits from x 7→ x̂ the property of being mono, natural, and
sub-cartesian.
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[6] H.P. Gumm and T. Schröder, Coalgebras of bounded type, Math. Struct. in
Comp. Science 12 (2001), 565–578.
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