
Dis
ussiones Mathemati
ae 11

General Algebra and Appli
ations 27 (2007 ) 11�19

SEMILATTICES WITH SECTIONAL MAPPINGS

Ivan Chajda

Department of Algebra and Geometry,

Pala
ký University of Olomou


Tomkova 40, 779 00 Olomou
, Cze
h Republi


e-mail: 
hajda�ris
.upol.
z

and

Günther Eigenthaler

Institute of Dis
rete Mathemati
s and Geometry,

Vienna University of Te
hnology

Wiedner Hauptstraÿe 8�10/104, 1040 Wien, Austria

e-mail: g.eigenthaler�tuwien.a
.at

Abstra
t

We 
onsider join-semilatti
es with 1 where for every element p a

mapping on the interval [p, 1] is de�ned; these mappings are 
alled

se
tional mappings and su
h stru
tures are 
alled semilatti
es with

se
tional mappings. We assign to every semilatti
e with se
tional map-

pings a binary operation whi
h enables us to 
lassify the 
ases where

the se
tional mappings are involutions and / or antitone mappings.

The paper generalizes results of [3℄ and [4℄, and there are also some


onne
tions to [1℄.
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In the whole paper we deal with join-semilatti
es with a greatest element

1, denoted by S = (S;∨, 1). Its indu
ed order will be denoted by ≤. For

p ∈ S, the interval [p, 1] of S is 
alled a se
tion. A mapping of [p, 1] into
itself is 
alled a se
tional mapping. To dis
ern su
h mappings for distin
t

se
tions, we will use the notation x 7→ xp
for x ∈ [p, 1]. If S is endowed

with a se
tional mapping on every se
tion, S will be 
alled a semilatti
e with

se
tional mappings.

For a semilatti
e S = (S;∨, 1) with se
tional mappings we de�ne the

so-
alled assigned operation ◦ as follows:

x ◦ y := (x ∨ y)y.

Sin
e x ∨ y ∈ [y, 1], ◦ is well-de�ned on S and the new stru
ture will be

denoted by S∗ = (S;∨, ◦, 1).

It is easily seen that the following properties hold in S∗
:

(1) x ◦ y ∈ [y, 1], i.e., (x ◦ y) ∨ y = x ◦ y for all x, y ∈ S;

(2) (x ∨ y) ◦ y = x ◦ y for all x, y ∈ S;

(3) x ◦ y = xy
for all y ∈ S and x ∈ [y, 1].

Conversely, let S∗ = (S;∨, ◦, 1) be a join-semilatti
e with a greatest element

1 and a binary operation ◦ satisfying (1) and (2). If we de�ne xp := x ◦ p

for any p ∈ S and x ∈ [p, 1], then S = (S;∨, 1) is a semilatti
e with

se
tional mappings.

Furthermore, using (1)�(3) one 
an easily 
he
k that the mappings S 7→

S∗
and S∗ 7→ S are inverse bije
tions between the 
lass of all semilatti
es

with se
tional mappings and the variety of all stru
tures (S;∨, ◦, 1) where

(S;∨, 1) is a join-semilatti
e with 1 and ◦ satis�es (1) and (2).

A se
tional mapping x 7→ xp
on [p, 1] is 
alled a swit
hing mapping if

the following holds:

xp = p if and only if x = 1,

xp = 1 if and only if x = p.

We say that S is a semilatti
e with se
tional swit
hing mappings if S is a

semilatti
e with se
tional mappings whi
h all are swit
hing mappings.
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Lemma 1. Let S∗ = (S;∨, ◦, 1) be the algebra assigned to a semilatti
e with

se
tional swit
hing mappings. Then S∗
satis�es the following:

(4) x ≤ y if and only if x ◦ y = 1;

(5) x ∨ y = 1 if and only if x ◦ y = y;

(6) x ◦ x = 1, x ◦ 1 = 1 and 1 ◦ x = x.

Conversely, suppose that S∗
satis�es (4)�(6), then S = (S;∨, 1) is a

semilatti
e with se
tional swit
hing mappings.

P roof. If x ≤ y then x ∨ y = y and hen
e x ◦ y = (x ∨ y)y = yy = 1.

Conversely, x ◦ y = 1 yields (x ∨ y)y = 1, from whi
h we infer x ∨ y = y

thus x ≤ y.

If x ∨ y = 1 then x ◦ y = (x ∨ y)y = 1y = y. Conversely, x ◦ y = y yields

(x ∨ y)y = y, whi
h implies x ∨ y = 1.

Further, 1 ◦ x = x follows from (5), and x ◦ x = 1, x ◦ 1 = 1 follow

from (4).

The se
ond statement of the Lemma follows straightforward from

(4)�(6).

In what follows, we 
all also S∗ = (S;∨, ◦, 1) a semilatti
e with se
tional

(swit
hing) mappings in 
ase that it 
orresponds to su
h a stru
ture by the

bije
tion de�ned above.

For an algebra A = (A;F ), denote by Con A the latti
e of all 
ongru-

en
es on A (with respe
t to set in
lusion), i.e., the latti
e of all equivalen
e

relations Θ on A whi
h are subalgebras of the algebra A×A. In parti
ular,

for a semilatti
e S∗ = (S;∨, ◦, 1) with se
tional mappings, Con S∗
denotes

the 
ongruen
e latti
e of S∗
.

Note that the meet ∧ in the latti
e Con A is given by the set-theoreti
al

interse
tion, i.e., Θ1 ∧Θ2 = Θ1 ∩Θ2 for all Θ1,Θ2 ∈ Con A. For x ∈ A and

Θ ∈ Con A, [x]Θ denotes the 
ongruen
e 
lass of x w.r.t. Θ.

An algebra A = (A;F ) with a 
onstant 1 is 
alled distributive at 1 if

[1](Θ ∩ (Φ ∨ Ψ)) = [1]((Θ ∩ Φ) ∨ (Θ ∩ Ψ))

for any Θ,Φ,Ψ ∈ Con A (where ∨ is the join in the latti
e Con A);
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A is permutable at 1 if

[1](Θ • Φ) = [1](Φ • Θ)

for any Θ,Φ ∈ Con A (where • denotes the relational produ
t). The

following result is a straightforward modi�
ation of Theorem 8.3.2 in [2℄.

Lemma 2. An algebra of a variety V with 
onstant 1 is both distributive at

1 and permutable at 1 if and only if there exists a binary term t(x, y) su
h

that

t(x, x) = 1, t(x, 1) = 1 and t(1, x) = x.

By Lemma 1, every semilatti
e with se
tional swit
hing mappings is a

member of a variety with a binary term t(x, y) = x ◦ y satisfying the

identities of Lemma 2. Hen
e, we infer immediately:

Corollary 1. Every semilatti
e S∗ = (S;∨, ◦, 1) with se
tional swit
hing

mappings is distributive at 1 and permutable at 1.

Call S∗ = (S;∨, ◦, 1) a semilatti
e with se
tional involutions if every

se
tional mapping is an involution, i.e., xpp = x for ea
h p ∈ S and ea
h

x ∈ [p, 1].

Lemma 3. Let S∗ = (S;∨, ◦, 1) be a semilatti
e with se
tional mappings.

Then S∗
is a semilatti
e with se
tional involutions if and only if it satis�es

the identity (x ◦ y) ◦ y = x ∨ y.

P roof. Suppose that every se
tional mapping is an involution. We have

(x ∨ y)y ∈ [y, 1], i.e., y ≤ (x ∨ y)y and hen
e

(x ◦ y) ◦ y = ((x ∨ y)y ∨ y)y = (x ∨ y)yy = x ∨ y.

Conversely, suppose x ∈ [p, 1] for p ∈ S. Then p ≤ x and

xp = x ◦ p (by (3)), i.e., xpp = (x ◦ p) ◦ p = x ∨ p = x

thus every se
tional mapping is an involution.
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Remark 1. Every semilatti
e S = (S;∨, 1) 
an be 
onsidered as a

semilatti
e with se
tional swit
hing involutions. Namely, for any p ∈ S

we 
an de�ne x 7→ xp
as follows:

1p = p, pp = 1 and xp = x for x 6= p, x 6= 1.

Of 
ourse, these mappings are both involutions and swit
hing mappings.

Hen
e, we 
an state:

Theorem 1. 0n every semilatti
e S = (S;∨, 1) we 
an de�ne a binary

operation ◦ satisfying

(i) x ≤ y if and only if x ◦ y = 1,

(ii) x ∨ y = 1 if and only if x ◦ y = y,

(iii) (x ◦ y) ◦ y = x ∨ y,

(iv) x ◦ x = 1, 1 ◦ x = x, x ◦ 1 = 1.

We are going to show that every 
ongruen
e on su
h a semilatti
e is uniquely

determined by its 
lass 
ontaining 1.

Lemma 4. Let S∗ = (S,∨, ◦, 1) be a semilatti
e with se
tional swit
hing

involutions and let Θ ∈ Con S∗
. Then

(x, y) ∈ Θ if and only if x ◦ y , y ◦ x ∈ [1]Θ.

P roof. Suppose (x, y) ∈ Θ. Then also

(x ◦ y, 1) = (x ◦ y, y ◦ y) ∈ Θ and

(y ◦ x, 1) = (y ◦ x, y ◦ y) ∈ Θ, i.e., x ◦ y, y ◦ x ∈ [1]Θ.

Conversely, suppose x ◦ y, y ◦ x ∈ [1]Θ. Then (x ◦ y, 1) ∈ Θ thus also

(x ∨ y, y) = ((x ◦ y) ◦ y, 1 ◦ y) ∈ Θ and (x ∨ y, x) = ((y ◦ x) ◦ x, 1 ◦ x) ∈ Θ.

Due to symmetry and transitivity of Θ, we get (x, y) ∈ Θ.

An algebra A = (A;F ) with a 
onstant 1 is 
alled weakly regular at 1 if every


ongruen
e on A is uniquely determined by its 1-
lass, i.e., if Θ,Φ ∈ Con A

and [1]Θ = [1]Φ then Θ = Φ.
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Theorem 2. Let S∗ = (S;∨, ◦, 1) be a semilatti
e with se
tional

swit
hing involutions. Then S∗
is weakly regular at 1 and, moreover, Con S∗

is distributive.

P roof. The �rst assertion follows from Lemma 4. Moreover [1](Θ∩(Φ∨Ψ))
= [1]((Θ∩Φ)∨ (Θ∩Ψ)) by Corollary 1 and hen
e, by the previous assertion,

also

Θ ∩ (Φ ∨ Ψ) = (Θ ∩ Φ) ∨ (Θ ∩ Ψ)

thus Con S∗
is distributive.

Call S∗ = (S;∨, ◦, 1) a semilatti
e with se
tional antitone mappings if every

se
tional mapping is antitone, i.e., if x ≤ y for x, y ∈ [p, 1] implies yp ≤ xp

for any p ∈ S.

Lemma 5. Let S∗ = (S;∨, ◦, 1) be a semilatti
e with se
tional mappings.

Then S∗
is a semilatti
e with se
tional antitone mappings if and only if it

satis�es

x ◦ z ≥ (x ∨ y) ◦ z.

P roof. Let every se
tional mapping be antitone. Sin
e z ≤ x∨z ≤ x∨y∨z,

we have

x ◦ z = (x ∨ z)z ≥ (x ∨ y ∨ z)z = (x ∨ y) ◦ z.

Conversely, if S∗
satis�es the given identity and x, y ∈ [z, 1] with x ≤ y, then

yz = y ◦ z = (x ∨ y) ◦ z ≤ x ◦ z = (x ∨ z)z = xz

thus every se
tional mapping is antitone.

Remark 2. It is evident that if S∗ = (S;∨, ◦, 1) is a semilatti
e with

se
tional antitone involutions then every se
tional mapping is also a

swit
hing mapping. Hen
e, these algebras have distributive 
ongruen
e lat-

ti
es and every 
ongruen
e on S∗
is determined by its 1-
lass (Theorem 2).

Moreover, we 
an 
hara
terize su
h semilatti
es by three simple identities,

as the following theorem shows.

Theorem 3. Let S∗ = (S;∨, ◦, 1) be a semilatti
e with se
tional mappings.

Then S∗
is a semilatti
e with se
tional antitone involutions if and only it

satis�es the following identities:
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(A1) 1 ◦ x = x,

(A2) (x ◦ y) ◦ y = x ∨ y,

(A3) ((x ∨ y) ◦ z) ◦ (x ◦ z) = 1.

P roof. Let S∗ = (S;∨, ◦, 1) satisfy (A1), (A2) and (A3). If a ◦ b = 1 for

a, b ∈ S then, by (A2) and (A1),

a ∨ b = (a ◦ b) ◦ b = 1 ◦ b = b thus a ≤ b.

Hen
e, (A3) yields (x∨y)◦z ≤ x◦z and, by Lemma 5, the se
tional mappings

are antitone. By (A2) and Lemma 3, they are involutions.

Conversely, if the se
tional mappings are antitone involutions then they

are swit
hing mappings and, by Lemma 1, S∗
satis�es (A1), by Lemma 3, it

satis�es (A2) and, by Lemma 5 and Lemma 1 (4), it satis�es also (A3).

Corollary 2. If S∗ = (S;∨, ◦, 1) satis�es (A1), (A2) and (A3) then every

se
tion is a latti
e ([p, 1],∧p,∨) with respe
t to the indu
ed order, and for

x, y ∈ [p, 1] we have

x ∧p y = ((x ◦ p) ∨ (y ◦ p)) ◦ p.

P roof. Sin
e the se
tional mappings are antitone involutions by Theorem

3, we obtain that

(xp ∨ yp)p = ((x ◦ p) ∨ (y ◦ p)) ◦ p

is a greatest lower bound of x, y in [p, 1].

Up to now we did not 
onsider the 
ase that se
tional mappings of di�erent

se
tions are dependent. If, however, (S,∨,∧, 1) is an upper bounded modular

latti
e, xq
is a 
omplement of x in the se
tion [q, 1], q ≤ p and x ∈ [p, 1] then

(cc) xp = xq ∨ p

is a 
omplement of x in [p, 1]. We 
an generalize this as follows: A semilatti
e

S∗ = (S;∨, ◦, 1) with se
tional mappings satis�es the 
ompatibility 
ondition

if for any q ≤ p ≤ x the 
ondition (

) holds. This 
ondition 
an be expressed

equivalently as an identity in the operations ∨ and ◦:

x ◦ (y ∨ z) = ((x ∨ y) ◦ z) ∨ y ∨ z for all x, y, z ∈ S.
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Indeed, applying the 
ompatibility 
ondition to the 
ase

z ≤ y ∨ z ≤ x ∨ y ∨ z

we obtain

(x ∨ y ∨ z)y∨z = (x ∨ y ∨ z)z ∨ y ∨ z,

i.e., x ◦ (y ∨ z) = ((x ∨ y) ◦ z) ∨ y ∨ z.

Conversely, (

) follows from this identity by taking y = p and z = q with

q ≤ p ≤ x.

By an ortholatti
e we mean a bounded latti
e with an antitone

involution x 7→ x′
su
h that x′

is a 
omplement of x. In this 
ase x′
is


alled an ortho
omplement of x. An orthomodular latti
e is an ortholatti
e

whi
h satis�es the orthomodular law:

x ≤ y implies x ∨ (y ∧ x′) = y

or, equivalently,

x ≤ y implies y ∧ (x ∨ y′) = x.

For a semilatti
e with se
tional mappings satisfying (

) we are able to


hara
terize � in the following theorem � the 
ase where all se
tions are

orthomodular latti
es. Let us note that the 
ase where all se
tions are

Boolean algebras was 
hara
terized by J.C. Abbott [1℄.

Theorem 4. Let S∗ = (S;∨, ◦, 1) be a semilatti
e with se
tional mappings

satisfying the 
ompatibility 
ondition. Then every se
tion is an orthomodular

latti
e if and only if S∗
satis�es (A1), (A2) and (A3).

P roof. Suppose S∗
satis�es (A1), (A2) and (A3). Then, by Corollary 2,

every se
tion is a latti
e ([p, 1],∧p,∨). Let x ∈ [p, 1], then p ≤ x ≤ x and,

by the 
ompatibility 
ondition, we obtain

1 = xx = xp ∨ x.

Sin
e, by Theorem 3, the se
tional mappings are antitone involutions, we

have xp ∧p x = (x ∨ xp)p = 1p = p thus xp
is a 
omplement and hen
e an

ortho
omplement of x in the se
tion [p, 1]. Suppose x, y ∈ [p, 1], x ≤ y.

Then p ≤ x ≤ y and, again by the 
ompatibility 
ondition, we have

yx = yp ∨ x
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thus y ∧p (x∨ yp) = y ∧p yx = x whi
h is just the orthomodular law in [p, 1],
i.e., ([p, 1],∧p,∨) is an orthomodular latti
e.

Conversely, if every se
tion of S∗
is an orthomodular latti
e and xp

is

an ortho
omplement of x in [p, 1] then the mapping x 7→ xp
is an antitone

involution and thus, by Theorem 3, S∗
satis�es (A1), (A2) and (A3).
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