Czasopismo
Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Warianty tytułu
Języki publikacji
Abstrakty
We introduce the concepts of pre-implication algebra and implication algebra based on orthosemilattices which generalize the concepts of implication algebra, orthoimplication algebra defined by J.C. Abbott [2] and orthomodular implication algebra introduced by the author with his collaborators. For our algebras we get new axiom systems compatible with that of an implication algebra. This unified approach enables us to compare the mentioned algebras and apply a unified treatment of congruence properties.
Kategorie tematyczne
Rocznik
Tom
Numer
Strony
141-153
Opis fizyczny
Daty
wydano
2006
otrzymano
2005-01-10
poprawiono
2006-03-29
Twórcy
autor
- Department of Algebra and Geometry, Palacký University of Olomouc, Tomkova 40, 779 00 Olomouc, Czech Republic
Bibliografia
- [1] J.C. Abbott, Semi-Boolean algebra, Matem. Vestnik 4 (1967), 177-198.
- [2] J.C. Abbott, Orthoimplication Algebras, Studia Logica 35 (1976), 173-177.
- [3] L. Beran, Orthomodular Lattices, Algebraic Approach, Mathematic and its Applications, D. Reidel Publ. Comp., 1985.
- [4] I. Chajda and R. Halaš, An Implication in Orthologic, submitted to Intern. J. Theor. Phys. 44 (2006), 735-744.
- [5] I. Chajda, R. Halaš and H. Länger, Orthomodular implication algebras, Intern. J. Theor. Phys. 40 (2001), 1875-1884.
- [6] G.M. Hardegree, Quasi-implication algebras, Part I: Elementary theory, Algebra Universalis 12 (1981), 30-47.
- [7] G.M. Hardegree, Quasi-implication algebras, Part II: Sructure theory, Algebra Universalis 12 (1981), 48-65.
- [8] J. Hedliková, Relatively orthomodular lattices, Discrete Math., 234 (2001), 17-38.
- [9] M.F. Janowitz, A note on generalized orthomodular lattices, J. Natural Sci. Math. 8 (1968), 89-94.
- [10] N.D. Megill and M. Pavičić, Quantum implication algebras, Intern. J. Theor. Phys. 48 (2003), 2825-2840.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1108