ArticleOriginal scientific text

Title

Hyper BCI-algebras

Authors 1

Affiliations

  1. Department of Mathematics, Northwest University, Xian 710069, P. R. China

Abstract

We introduce the concept of a hyper BCI-algebra which is a generalization of a BCI-algebra, and investigate some related properties. Moreover we introduce a hyper BCI-ideal, weak hyper BCI-ideal, strong hyper BCI-ideal and reflexive hyper BCI-ideal in hyper BCI-algebras, and give some relations among these hyper BCI-ideals. Finally we discuss the relations between hyper BCI-algebras and hyper groups, and between hyper BCI-algebras and hyper Hv-groups.

Keywords

hyper BCI-algebra, hyper group, hyper Hv-group

Bibliography

  1. P. Corsini, Prolegomena of hypergroup theory, Aviani Editore 1993.
  2. K. Iséki and S. Tanaka, Ideal theory of BCK-algebras, Math. Japon. 21 (1976), 351-366
  3. K. Iséki and S. Tanaka, An introduction to the theory of BCK-algebras, Math. Japon. (1) 23 (1978), 1-26.
  4. Y.B. Jun and X.L. Xin, Scalar elements and hyperatoms of hyper BCK-algebras, Scientiae Mathematicae (3) 2 (1999), 303-309
  5. Y.B. Jun and X.L. Xin, Positive implicative hyper BCK-algebras, Scientiae Mathematicae Japonicae Online 5 (2001), 67-76
  6. Y.B. Jun, X.L. Xin, E.H. Roh and M.M. Zahedi, Strong hyper BCK-ideals of hyper BCK-algebras, Math. Japon. (3) 51 (2000), 493-498
  7. Y.B. Jun, M.M. Zahedi, X.L. Xin and R.A. Borzoei, On hyper BCK-algebras, Italian J. Pure and Appl. Math. 8 (2000), 127-136
  8. F. Marty, Sur une generalization de la notion de groupe, 8th Congress Math. Scandinaves, Stockholm (1934), 45-49.
  9. J. Meng and Y.B. Jun, BCK-algebras, Kyungmoonsa, Seoul, Korea 1994.
  10. M.M. Zahedi and A. Hasankhani, F-polygroups (I), J. Fuzzy Math. 3 (1996), 533-548
  11. T. Vougiouklis, A new class of hyperstructure, J. Comb. Inf. Syst. Sciences.
Pages:
5-19
Main language of publication
English
Received
2004-01
Accepted
2005-09
Published
2006
Exact and natural sciences