Download PDF - Hyper BCI-algebras
ArticleOriginal scientific text
Title
Hyper BCI-algebras
Authors 1
Affiliations
- Department of Mathematics, Northwest University, Xian 710069, P. R. China
Abstract
We introduce the concept of a hyper BCI-algebra which is a generalization of a BCI-algebra, and investigate some related properties. Moreover we introduce a hyper BCI-ideal, weak hyper BCI-ideal, strong hyper BCI-ideal and reflexive hyper BCI-ideal in hyper BCI-algebras, and give some relations among these hyper BCI-ideals. Finally we discuss the relations between hyper BCI-algebras and hyper groups, and between hyper BCI-algebras and hyper -groups.
Keywords
hyper BCI-algebra, hyper group, hyper -group
Bibliography
- P. Corsini, Prolegomena of hypergroup theory, Aviani Editore 1993.
- K. Iséki and S. Tanaka, Ideal theory of BCK-algebras, Math. Japon. 21 (1976), 351-366
- K. Iséki and S. Tanaka, An introduction to the theory of BCK-algebras, Math. Japon. (1) 23 (1978), 1-26.
- Y.B. Jun and X.L. Xin, Scalar elements and hyperatoms of hyper BCK-algebras, Scientiae Mathematicae (3) 2 (1999), 303-309
- Y.B. Jun and X.L. Xin, Positive implicative hyper BCK-algebras, Scientiae Mathematicae Japonicae Online 5 (2001), 67-76
- Y.B. Jun, X.L. Xin, E.H. Roh and M.M. Zahedi, Strong hyper BCK-ideals of hyper BCK-algebras, Math. Japon. (3) 51 (2000), 493-498
- Y.B. Jun, M.M. Zahedi, X.L. Xin and R.A. Borzoei, On hyper BCK-algebras, Italian J. Pure and Appl. Math. 8 (2000), 127-136
- F. Marty, Sur une generalization de la notion de groupe, 8th Congress Math. Scandinaves, Stockholm (1934), 45-49.
- J. Meng and Y.B. Jun, BCK-algebras, Kyungmoonsa, Seoul, Korea 1994.
- M.M. Zahedi and A. Hasankhani, F-polygroups (I), J. Fuzzy Math. 3 (1996), 533-548
- T. Vougiouklis, A new class of hyperstructure, J. Comb. Inf. Syst. Sciences.