ArticleOriginal scientific text

Title

Subdirectly irreducible non-idempotent left symmetric left distributive groupoids

Authors 1, 2, 2

Affiliations

  1. Mathematical Institute, Academy of Sciences, Prague, Czech Republic
  2. Charles University in Prague, Czech Republic

Abstract

We study groupoids satisfying the identities x·xy = y and x·yz = xy·xz. Particularly, we focus our attention at subdirectlyirreducible ones, find a description and charecterize small ones.

Keywords

groupoid, left distributive, left symmetric, subdirectly irreducible

Bibliography

  1. S. Burris and H.P. Sankappanavar, A course in universal algebra, GTM 78, Springer 1981.
  2. P. Dehornoy, Braids and self-distributivity, Progress in Math. 192, Birkhäuser Basel 2000.
  3. D. Joyce, Simple quandles, J. Algebra 79 (1982), 307-318.
  4. T. Kepka, Non-idempotent left symmetric left distributive groupoids, Comment. Math. Univ. Carolinae 35 (1994), 181-186.
  5. T. Kepka and P. Nemec, Selfdistributive groupoids. A1. Non-indempotent left distributive groupoids, Acta Univ. Carolin. Math. Phys. 44/1 (2003), 3-94.
  6. H. Nagao, A remark on simple symmetric sets, Osaka J. Math. 16 (1979), 349-352.
  7. B. Roszkowska-Lech, Subdirectly irreducible symmetric idempotent entropic groupoids, Demonstratio Math. 32/3 (1999), 469-484.
  8. D. Stanovský, A survey of left symmetric left distributive groupoids, available at http://www.karlin.mff.cuni.cz/~stanovsk/math/survey.pdf.
  9. D. Stanovský, Left symmetric left distributive operations on a group, Algebra Universalis 54/1 (2003), 97-103.
  10. M. Takasaki, Abstractions of symmetric functions, Tôhoku Math. Journal 49 (1943), 143-207 (Japanese).
Pages:
235-257
Main language of publication
English
Received
2005-07-25
Published
2005
Exact and natural sciences