PRESOLID VARIETIES OF n-SEMIGROUPS

Avapa Chantasartrassmee
The University of the Thai Chamber of Commerce
Department of Mathematics
126/1 Vibhavadee-Rangsit Road
Din Daeng Bangkok 10400, Thailand
e-mail: avapa_a@hotmail.com
AND
Jörg Koppitz
University of Potsdam, Institute of Mathematics
Am Neuen Palais, 14415 Potsdam, Germany
e-mail: koppitz@rz.uni-potsdam.de

Abstract

The class of all M-solid varieties of a given type τ forms a complete sublattice of the lattice $\mathcal{L}(\tau)$ of all varieties of algebras of type τ. This gives a tool for a better description of the lattice $\mathcal{L}(\tau)$ by characterization of complete sublattices. In particular, this was done for varieties of semigroups by L. Polák ([10]) as well as by Denecke and Koppitz ([4], [5]). Denecke and Hounnon characterized M-solid varieties of semirings ([3]) and M-solid varieties of groups were characterized by Koppitz ([9]). In the present paper we will do it for varieties of n-semigroups. An n-semigroup is an algebra of type (n), where the operation satisfies the $[i, j]$-associative laws for $1 \leq i<j \leq n$, introduced by Dörtnte ([2]). It is clear that the notion of a 2 -semigroup is the same as the notion of a semigroup. Here we will consider the case $n \geq 3$.

Keywords: hypersubstitution, presolid, n-semigroup.
2000 Mathematics Subject Classification: 08B15, 08B25.

1. Introduction

Let τ be a fixed type of algebras, with fundamental operation symbols f_{i} of arity n_{i}, for $i \in I$. A hypersubstitution of type τ is a mapping which associates to every operation symbol f_{i} an n_{i}-ary term $\sigma\left(f_{i}\right)$ of type τ. Let $W_{\tau}(X)$ be the set of all terms of type τ on an alphabet $X:=\left\{x_{1}, x_{2}, x_{3}, \ldots\right\}$. By $W_{\tau}\left(X_{n}\right)\left(X_{n}:=\left\{x_{1}, \ldots, x_{n}\right\}\right)$ we denote the set of all n-ary terms, $n \geq 1$. For $1 \leq m, n \in \mathbb{N}$ we define an operation $S_{m}^{n}: W_{\tau}\left(X_{n}\right) \times W_{\tau}\left(X_{m}\right)^{n} \rightarrow$ $W_{\tau}\left(X_{m}\right)$ inductively as follows: For $\left(t_{1}, \ldots, t_{n}\right) \in W_{\tau}\left(X_{m}\right)^{n}$ we put:
(i) $S_{m}^{n}\left(x_{i}, t_{1}, \ldots, t_{n}\right):=t_{i}$ for $1 \leq i \leq n$;
(ii) $S_{m}^{n}\left(f_{i}\left(s_{1}, \ldots, s_{n_{i}}\right), t_{1}, \ldots, t_{n}\right):=f_{i}\left(S_{m}^{n}\left(s_{1}, t_{1}, \ldots, t_{n}\right), \ldots, S_{m}^{n}\left(s_{n_{i}}, t_{1}\right.\right.$, $\left.\ldots, t_{n}\right)$) for $i \in I, s_{1}, \ldots, s_{n_{i}} \in W_{\tau}\left(X_{n}\right)$ where $S_{m}^{n}\left(s_{1}, t_{1}, \ldots, t_{n}\right)$, $\ldots, S_{m}^{n}\left(s_{n_{i}}, t_{1}, \ldots, t_{n}\right)$ will be assumed to be already defined.

Any hypersubstitution σ can be uniquely extended to a mapping $\widehat{\sigma}$ on $W_{\tau}(X)$ inductively as follows:
(i) $\widehat{\sigma}[w]:=w$ for $w \in X$;
(ii) $\widehat{\sigma}\left[f_{i}\left(t_{1}, \ldots, t_{n_{i}}\right)\right]:=S_{m}^{n_{i}}\left(\sigma\left(f_{i}\right), \widehat{\sigma}\left[t_{1}\right], \ldots, \widehat{\sigma}\left[t_{n_{i}}\right]\right)$ for $i \in I, t_{1}, \ldots, t_{n_{i}}$ $\in W_{\tau}\left(X_{m}\right)$ where $\widehat{\sigma}\left[t_{1}\right], \ldots, \widehat{\sigma}\left[t_{n_{i}}\right]$ will be assumed to be already defined.

A binary operation o_{h} can be defined on the set $\operatorname{Hyp}(\tau)$ of all hypersubstitutions of type τ, by letting $\sigma_{1} \circ_{h} \sigma_{2}=\widehat{\sigma}_{1} \circ \sigma_{2}$, where \circ is the usual composition of functions. The set $\operatorname{Hyp}(\tau)$ is closed under this associative operation. It also contains an identity element for \circ_{h}, namely the identity hypersubstitution $\sigma_{i d}$ which maps every f_{i} to $f_{i}\left(x_{1}, \ldots, x_{n_{i}}\right)$. Thus $\operatorname{Hyp}(\tau)$ is a monoid.

Now let M be any submonoid of $\operatorname{Hyp}(\tau)$. A variety V is called M-solid if for every $\sigma \in M$ and every identity $u \approx v$ in V, the identity $\widehat{\sigma}[u] \approx \widehat{\sigma}[v]$ holds in V. When M is the whole monoid $\operatorname{Hyp}(\tau)$, an M-solid variety is called a solid variety. Two hypersubstitutions σ_{1}, σ_{2} are said to be V-equivalent if for every operation symbol f_{i} of type $\tau, \sigma_{1}\left(f_{i}\right) \approx \sigma_{2}\left(f_{i}\right)$
is an identity in V. In this case we write $\sigma_{1} \sim_{V} \sigma_{2}$. In [11] it was proved that if $\widehat{\sigma}_{1}[s] \approx \widehat{\sigma}_{1}[t]$ is an identity in V for given terms $s, t \in W_{\tau}(X)$ and $\sigma_{1} \sim_{V} \sigma_{2}$ then $\widehat{\sigma}_{2}[s] \approx \widehat{\sigma}_{2}[t]$ is an identity in V. Therefore, at most one element from each equivalence class of \sim_{V} is needed to test the M-solidity.

The motivation of studying M-solid varieties comes from following result of Denecke and Reichel in [6]. For each monoid M of $\operatorname{Hyp}(\tau)$, the collection of all M-solid varieties of type τ forms a complete lattice, which is a complete sublattice of the lattice $\mathcal{L}(\tau)$ of all varieties of type τ. This lattice $\mathcal{L}(\tau)$ is in general large and complicated, and difficult to study, and the M-solid sublattices give us a way to study at least some of its sublattices. Thus it may be useful to study the monoid $\operatorname{Hyp}(\tau)$ and its submonoids M and the corresponding M-solid varieties, both in general and for specific type τ, and the intersection of the lattice of all M-solid varieties with a fixed variety of type τ. For specific types, much work has been done for type $\tau=$ (2), and in particular for varieties of semigroups. L. Polák ([10]) has given a characterization of the lattice of solid semigroup varieties, and various authors have studied M-solid semigroup varieties for various choices of M. Moreover, for type $\tau=(2,2)$, in [3], all solid varieties of semirings are determined and, for type $\tau=(2,1,0)$, J. Koppitz ([9]) determined M-solid varieties of groups. More informations about hypersubstitutions, one can find in [8].
Our goal in this paper is a similar investigation for type (n), for $n \geq 3$. Only a few solid varieties of type (n) have been known (see [1] and [7]). We will consider the concept of an n-semigroup, which is a natural extension of the concept of a semigroup. An n-semigroup is an algebra of type (n), where the n-ary operation satisfies the $[i, j]$-associative laws

$$
\begin{aligned}
& x_{1} \ldots x_{i-1}\left(x_{i} \ldots x_{i+n-1}\right) x_{i+n} \ldots x_{2 n-1} \approx \\
& x_{1} \ldots x_{j-1}\left(x_{j} \ldots x_{j+n-1}\right) x_{j+n} \ldots x_{2 n-1}, \text { for } 1 \leq i<j \leq n
\end{aligned}
$$

Each n-group is an n-semigroup (see Dörnte [2]). Each semigroup ($S ; \cdot$) induce an n-semigroup in the following way: Let $f_{n}: S^{n} \rightarrow S$ be defined by $f_{n}\left(a_{1}, a_{2}, \ldots, a_{n}\right):=a_{1} \cdot a_{2} \cdot \ldots \cdot a_{n}$ (we use the binary operation \cdot of the given semigroup). Since \cdot is associative, f_{n} satisfies the $[i, j]$-associative laws for $1 \leq i<j \leq n$, i.e., $\left(S ; f_{n}\right)$ is an n-semigroup. Clearly, in the case $n=2$ we have the $[1,2]$-associative law $\left(x_{1} x_{2}\right) x_{3} \approx x_{1}\left(x_{2} x_{3}\right)$. So the notion of a 2 -semigroup is the same as the notion of a semigroup.

We also introduce the monoids $\operatorname{Ner}(n)$ and $\operatorname{Pre}(n)$ and give a characterization of all $N \operatorname{Per}(n)$-solid as well as all $\operatorname{Pre}(n)$-solid varieties of semigroups.

2. Hypersubstitutions of type (n)

In this section we present some background information about hypersubstitutions and varieties of type (n), and introduce the special monoids we shall be studying. We assume throughout a fixed type (n), with $n \geq 3$, so we have one n-ary operation symbol which we shall denote by f. For Σ any set of identities of type (n), we will denote by $\operatorname{Mod}(\Sigma)$ the variety determined by the set Σ and by $I d V$ we denote the set of all identities which hold in a given variety V. Because of the $[i, j]$-associative laws, $1 \leq i<j \leq n$, a term over a variety of n-semigroups can be regarded as a word of the length $(n-1) r+1$ for a suitable natural number r. By $l(t)$ we denote the length of a given term $t \in W_{(n)}(X)$ and $\operatorname{var}(t)$ means the set of variables occurring in t. By $c v(t)$ we mean the cardinality of $\operatorname{var}(t)$. For example, if $t=f\left(x_{1}, \ldots, x_{1}\right)$ then $l(t)=n, \operatorname{var}(t)=\left\{x_{1}\right\}$, and $c v(t)=1$. An identity $u \approx v$ is said to be normal if $u=v$ or both terms u and v are different from a variable. Since any hypersubstitution σ in $\operatorname{Hyp}(n)$ is completely determined by what it does to f, we will denote by σ_{t} the hypersubstitution which maps f to the term t. For convenience, we list here some sets of terms and varieties of type (n) that we shall discuss later:
$W_{(n)}^{n p}\left(X_{n}\right)$ be the set of all $t \in W_{(n)}\left(X_{n}\right)$ containing a subword s with $n=l(s)>c v(s) ;$
$\widetilde{W}_{(n)}^{n p}(X):=\left\{t \in W_{(n)}(X) \mid l(t)>c v(t)\right\} ;$
$\widetilde{V}_{n}:=\operatorname{Mod}\left\{x_{1} \ldots x_{2 n-1} \approx x_{1} \ldots x_{i-1} x_{i+1} x_{i+2} x_{i} x_{i+3} \ldots x_{2 n-1} \mid 1 \leq i \leq 2 n-3\right\} ;$
$\widetilde{W}_{n}:=\operatorname{Mod}\left\{t \approx x^{n} \mid t \in W_{(n)}\left(X_{n}\right), n=l(t)>c v(t)\right\} ;$
$V_{n}:=\widetilde{V}_{n} \cap \widetilde{W}_{n}$.
It is easy to verify that there is no nontrivial solid variety of n-semigroups.
Theorem 1. For each natural number $n \geq 3$ there is not nontrivial solid variety of n-semigroups.

Proof. Let V be a solid variety of n-semigroups. Then $\widehat{\sigma}_{x_{2}}\left[\left(x_{1} \ldots x_{n}\right)\right.$ $\left.x_{n+1} \ldots x_{2 n-1}\right] \approx \widehat{\sigma}_{x_{2}}\left[x_{1} \ldots x_{n-1}\left(x_{n} \ldots x_{2 n-1}\right)\right] \in I d V$,i.e., $x_{n+1} \approx x_{2} \in I d V$ and V is the trivial variety of type (n).

A hypersubstitution σ is called a pre-hypersubstitution if $\sigma(f)$ is not a variable. The set $\operatorname{Pre}(n)$ of all pre-hypersubstitutions forms a submonoid of the monoid $H y p(n)$ of all hypersubstitutions of type (n). A variety of n-semigroups is called presolid if it is M-solid for $M=\operatorname{Pre}(n)$. Note that any solid variety is also presolid. By S_{n} we will denote the set of all bijections on the set $\{1, \ldots, n\}$. For $\pi \in S_{n}$, the hypersubstitution σ with $\sigma(f)=f\left(x_{\pi(1)}, \ldots, x_{\pi(n)}\right)$ will be denoted by σ_{π}. We will use the following notations of sets of hypersubstitutions:
$\operatorname{Pre}(n):=\operatorname{Hyp}(n) \backslash\left\{\sigma_{x_{i}} \mid 1 \leq i \leq n\right\}$ the set of all pre-hypersubstitutions;
$\operatorname{Per}(n):=\left\{\sigma_{\pi} \mid \pi \in S_{n}\right\} ;$
$\operatorname{Nper}(n):=\left\{\sigma_{t} \mid t \in W_{(n)}^{n p}\left(X_{n}\right)\right\} \cup\left\{\sigma_{i d}\right\}$.

Proposition 2. For $2 \leq n \in \mathbb{N}$, Nper (n) forms a monoid.
Proof. We have to check that $\sigma_{1} \circ_{h} \sigma_{2} \in N \operatorname{per}(n)$ for any $\sigma_{1}, \sigma_{2} \in$ $N \operatorname{per}(n)$. For this let $\sigma_{1}, \sigma_{2} \in \operatorname{Nper}(n)$. Then there are $r, t \in W_{(n)}^{n p}\left(X_{n}\right)$ such that $\sigma_{1}(f)=r$ and $\sigma_{2}(f)=t$. In particular, r contains a subword s with $n=l(s)>c v(s)$. Further, $\widehat{\sigma}_{1}[t]$ contains a subterm $S_{n}^{n}\left(r, x_{i_{1}}, \ldots, x_{i_{n}}\right)$. Since r contains a subword s with $n=l(s)>c v(s)$, the term $S_{n}^{n}\left(r, x_{i_{1}}, \ldots, x_{i_{n}}\right)$ contains a subword \widetilde{s} with $n=l(\widetilde{s})>c v(\widetilde{s})$. Consequently, $\widehat{\sigma}_{1}[t]$ contains the subword \widetilde{s} with $n=l(\widetilde{s})>c v(\widetilde{s})$, i.e., $\sigma_{1} \circ_{h} \sigma_{2}(f)=\widehat{\sigma}_{1}[t] \in W_{(n)}^{n p}\left(X_{n}\right)$ and thus $\sigma_{1} \circ_{h} \sigma_{2} \in \operatorname{Ner}(n)$.

3. Presolid varieties of n-Semigroups

We begin the investigations of presolid varieties of n-semigroups by looking for a variety that contains all presolid varieties.

Proposition 3. Let $3 \leqq n \in \mathbb{N}$ and V be any Pre(n)-solid variety of n-semigroups. Then $V \subseteq \widetilde{V}_{n}$.

Proof. Let $\pi \in S_{n}$ with $\pi(1)=2, \pi(2)=1$ and $\pi(k)=k$ for $3 \leq k \leq n$. If we apply σ_{π} to the $[1, n]$-associative law we get $x_{n+1} x_{2} x_{1} x_{3} \ldots$ $x_{n} x_{n+2} \ldots x_{2 n-1} \approx x_{2} x_{1} x_{3} \ldots x_{n+1} x_{n} x_{n+2} x_{n+3} \ldots x_{2 n-1} \in I d V$ since V is $\operatorname{Pre}(n)$-solid. By suitable substitution we get $x_{1} \ldots x_{2 n-1} \approx x_{2} \ldots x_{n} x_{1}$ $x_{n+1} \ldots x_{2 n-1} \in I d V$. If $n \geq 4$ then the application of σ_{π} to the [3, 4]associative law gives $x_{2} x_{1} x_{4} x_{3} x_{5} \ldots x_{2 n-1} \approx x_{2} x_{1} x_{3} x_{5} x_{4} x_{6} \ldots x_{2 n-1} \in I d V$.

Both identities together provide $x_{1} \ldots x_{2 n-1} \approx x_{1} \ldots x_{i-1} x_{i+1} x_{i+2}$ $x_{i} x_{i+3} \ldots x_{2 n-1} \in I d V$ for $1 \leq i \leq n-2$. Let $\rho \in S_{n}$ with $\rho(2 n-1)=2 n-2$, $\rho(2 n-2)=2 n-1$ and $\rho(k)=k$ for $1 \leq k \leq 2 n-3$. Dually, then the application of σ_{ρ} to the $[1, n]$-associative law as well as to the $[n-3, n-2]$ associative law (if $n \geq 4$) provides identities from which we can derive $x_{1} \ldots x_{2 n-1} \approx x_{1} \ldots x_{i-1} x_{i+1} x_{i+2} x_{i} x_{i+3} \ldots x_{2 n-1} \in I d V$ for $n \leq i \leq 2 n-3$. Finally, we have

$$
\begin{aligned}
& x_{1} \ldots x_{2 n-1} \\
& \approx x_{1} \ldots x_{n-1} x_{n+1} x_{n+2} x_{n} x_{n+3} \ldots x_{2 n-1} \\
& \approx x_{1} \ldots x_{n+1} x_{n-2} x_{n-1} x_{n+2} x_{n} x_{n+3} \ldots x_{2 n-1} \\
& \approx x_{1} \ldots x_{n+1} x_{n-2} x_{n} x_{n-1} x_{n+2} x_{n+3} \ldots x_{2 n-1} \\
& \approx x_{1} \ldots x_{n-2} x_{n} x_{n+1} x_{n-1} x_{n+2} x_{n+3} \ldots x_{2 n-1}, \quad \text { i.e. } \\
& x_{1} \ldots x_{2 n-1} \approx x_{1} \ldots x_{n-2} x_{n} x_{n+1} x_{n-1} x_{n+2} x_{n+3} \ldots x_{2 n-1} \in \operatorname{IdV}
\end{aligned}
$$

Altogether we have $x_{1} \ldots x_{2 n-1} \approx x_{1} \ldots x_{i-1} x_{i+1} x_{i+2} x_{i} x_{i+3} \ldots x_{2 n-1} \in I d V$ for $1 \leq i \leq 2 n-3$.

Now we will determine identities satisfying by presolid varieties.
Lemma 4. Let $4 \leq n \in 2 \mathbb{N}$ and V be any Pre(n)-solid variety of n-semigroups. Then $x_{1} \ldots x_{2 n-1} \approx x_{\pi(1)} \ldots x_{\pi(2 n-1)}$ for all $\pi \in S_{2 n-1}$.

Proof. Let $\pi \in S_{2 n-1}$ with $\pi(1)=2, \pi(2)=1$ and $\pi(k)=k$ for $3 \leq k \leq 2 n-1$. If we apply σ_{π} to the $[1, n]$-associative law we get $x_{n+1} x_{2} x_{1} x_{3} \ldots x_{n} x_{n+2} \ldots x_{2 n-1} \approx x_{2} x_{1} x_{3} \ldots x_{n+1} x_{n} x_{n+2} \ldots x_{2 n-1} \in I d V$ since V is $\operatorname{Pre}(n)$-solid and by suitable substitution we obtain

$$
\begin{equation*}
x_{1} \ldots x_{2 n-1} \approx x_{2} \ldots x_{n} x_{1} x_{n+1} \ldots x_{2 n-1} \in I d V \tag{1}
\end{equation*}
$$

By Proposition 3 we have $V \subseteq \widetilde{V}_{n}$. Using the identities of \widetilde{V}_{n} we get $x_{2} \ldots x_{n} x_{1} x_{n+1} \ldots x_{2 n-1} \approx x_{2} x_{1} x_{3} \ldots x_{2 n-1} \in I d V$ (since n is a even number). Together with (1) we obtain $x_{1} \ldots x_{2 n-1} \approx x_{2} x_{1} x_{3} \ldots x_{2 n-1} \in I d V$. It is easy to see that one can derive $x_{1} \ldots x_{2 n-1} \approx x_{\pi(1)} \ldots x_{\pi(2 n-1)}$ for all $\pi \in S_{2 n-1}$ from $x_{1} \ldots x_{2 n-1} \approx x_{2} x_{1} x_{3} \ldots x_{2 n-1}$ and the identities of \widetilde{V}_{n}.

Lemma 5. Let $3 \leq n \in \mathbb{N}, 2 n-1 \leq p \in(n-1) \mathbb{N}+1$ and V be a variety of n-semigroups with $V \subseteq \widetilde{V}_{n}$. Then for each $\pi \in S_{p}$ holds

$$
\begin{aligned}
& x_{\pi(1)} \ldots x_{\pi(p)} \approx x_{1} \ldots x_{p} \in I d V \text { or } \\
& x_{\pi(1)} \ldots x_{\pi(p)} \approx x_{2} x_{1} x_{3} \ldots x_{p} \in I d V .
\end{aligned}
$$

Proof. Let $\pi \in S_{p}$. We consider the term $x_{\pi(1)} \ldots x_{\pi(p)}$ and move step by step $x_{p}, x_{p-1}, \ldots, x_{3}$ to the $p^{\text {th }},(p-1)^{\text {th }}, \ldots, 3^{\text {th }}$ position using the identities of \widetilde{V}_{n}. Then we have on the first both positions $x_{1} x_{2}$ or $x_{2} x_{1}$. This shows $x_{\pi(1)} \ldots x_{\pi(p)} \approx x_{1} \ldots x_{p} \in I d V$ or $x_{\pi(1)} \ldots x_{\pi(p)} \approx x_{2} x_{1} x_{3} \ldots x_{p} \in I d V$.

It is easy to check that $\operatorname{Nper}(n) \subseteq \operatorname{Pre}(n)$. So, any presolid variety has to be $N \operatorname{per}(n)$-solid. Next we find the lattice of all $N \operatorname{per}(n)$-solid varieties of n-semigroups.

Lemma 6. Let $3 \leq n \in \mathbb{N}$ and V be any variety of n-semigroups with $V \subseteq V_{n}$. Then for each $t \in \widetilde{W}_{(n)}^{n p}(X)$ holds $t \approx z^{n} \in I d V$.

Proof. Let $t \in \widetilde{W}_{(n)}^{n p}(X)$. Then there is a variable $w \in X$ that occurs at least two times in t. If $l(t)=n$ then $l(t)>c v(t)$ and $t \approx x^{n} \in I d V$ since $V \subseteq \widetilde{W}_{n}$. Suppose now that $l(t)>n$. Using the identities of \widetilde{V}_{n} we can move w on the first and the second position, respectively, i.e., $t \approx$ $w w u_{3} \ldots u_{l(t)}$ with $u_{3}, \ldots, u_{l(t)} \in X$. Since $x_{1} x_{1} x_{3} \ldots x_{n} \approx z^{n} \in I d V$ we have $w w u_{3} \ldots u_{n-1}\left(u_{n} \ldots u_{l(t)}\right) \approx z^{n} \in I d V$, i.e., $t \approx z^{n} \in I d V$.

Lemma 7. Let $3 \leq n \in \mathbb{N}$ and V be any nontrivial variety of n-semigroups with $V \subseteq \widetilde{W}_{n}$. Then only normal identities hold in V.

Proof. Assume that a non-normal identity $u \approx v$ holds in V. Then $u \neq v$ and one of the terms u and v is a variable. Without loss of generality let u be a variable. Since V is a nontrivial variety the term $v(\neq u)$ is not a variable. Then by substitution we get $y \approx y^{l(v)} \in I d V$ where $l(v)>1$. Clearly, $l(v)=r(n-1)+1$ for some natural number $r \geq 1$. From $x y^{n-1} \approx z^{n} \in I d V$ it follows $y^{r(n-1)+1} \approx z^{n} \in I d V$, i.e., $y^{l(v)} \approx z^{n} \in I d V$. But $y \approx y^{l(v)}$ and $y^{l(v)} \approx z^{n}$ provide $x \approx y$, and V is the trivial variety, a contradiction.

Proposition 8. Let $3 \leq n \in \mathbb{N}$. A nontrivial variety V of n-semigroups is Nper (n)-solid iff $V \subseteq \widetilde{W}_{n}$.

Proof. Assume that V is $N p e r(n)$-solid. We have $t_{1}:=x_{1} x_{2}^{n-1} \in W_{(n)}^{n p}\left(X_{n}\right)$, i.e., $\sigma_{t_{1}} \in N \operatorname{per}(n)$ and its application to the [1, 3]-associative law gives

$$
\begin{equation*}
x_{1} x_{2}^{n-1} x_{n+1}^{n-1} \approx x_{1} x_{2}^{n-1} \in I d V . \tag{1}
\end{equation*}
$$

Further, we have $t_{2}:=x_{2} x_{3}^{n-1} \in W_{(n)}^{n p}\left(X_{n}\right)$, i.e., $\sigma_{t_{2}} \in \operatorname{Nper}(n)$ and its application to the [1,2]-associative law gives

$$
\begin{equation*}
x_{n+1} x_{n+2}^{n-1} \approx x_{3} x_{4}^{n-1} x_{n+2}^{n-1} \in I d V . \tag{2}
\end{equation*}
$$

Then one obtains $x y^{n-1} \stackrel{(1)}{\approx} x y^{n-1} z^{n-1} \stackrel{(2)}{\approx} w z^{n-1} \in I d V$, i.e., we have $x y^{n-1} \approx z^{n} \in I d V$. Dually, we can show that $x^{n-1} y \approx z^{n} \in I d V$. Let now $t \in W_{(n)}\left(X_{n}\right)$ with $n=l(t)>c v(t)$. Then there are $u_{1}, \ldots, u_{n} \in X$ such that $t=u_{1} \ldots u_{n}$. Since $l(t)>c v(t)$ there are $i, j \in\{1, \ldots, n\}$ with $i<j$ such that $u_{i}=u_{j}$. Then the term $s:=x_{1} \ldots x_{j-1} x_{i} x_{j+1} \ldots x_{n}$ belongs to $W_{(n)}^{n p}\left(X_{n}\right)$, i.e., $\sigma_{s} \in \operatorname{Nper}(n)$. Without loss of generality let $i \neq 1$. Then the application of σ_{s} to the $[1, j]$-associative law gives $x_{1} \ldots x_{j-1} x_{i} x_{j+1} \ldots$ $x_{n} x_{n+1} \ldots x_{n+j-2} x_{n+i-1} x_{n+j} \ldots x_{2 n-1} \approx x_{1} \ldots x_{j-1} x_{i} x_{n+j} \ldots x_{2 n-1}$. Then $x_{n+1} \notin\left\{x_{1}, \ldots, x_{j-1}, x_{i}, x_{n+j}, \ldots, x_{2 n-1}\right\}$ since $1<i<j \neq 1$. So, we substitute x_{n+1} by x_{n+1}^{n} and get $x_{1} \ldots x_{j-1} x_{i} x_{n+j} \ldots x_{2 n-1} \approx x_{1} \ldots$ $x_{j-1} x_{i} x_{j+1} \ldots x_{n} x_{n+1}^{n} \ldots x_{n+j-2} x_{n+i-1} x_{n+j} \ldots x_{2 n-1}$. It is easy to check that one can derive $x_{1} \ldots x_{j-1} x_{i} x_{j+1} \ldots x_{n} x_{n+1}^{n} \ldots x_{n+j-2} x_{n+i-1} x_{n+j} \ldots$ $x_{2 n-1} \approx z^{n}$ using $x y^{n-1} \approx x^{n-1} y \approx z^{n} \in I d V$, i.e., one gets $x_{1} \ldots x_{j-1}$ $x_{i} x_{n+j} \ldots x_{2 n-1} \approx z^{n} \in I d V$. Consequently, if we substitute x_{i} by u_{i} for $1 \leq i \leq n$ we get $u_{1} \ldots u_{n} \approx z^{n} \in I d V$, i.e., $t \approx z^{n} \in I d V$. Altogether, $V \subseteq \widetilde{W}_{n}$.

Suppose now that $V \subseteq \widetilde{W}_{n}$. Let $t \in W_{(n)}^{n p}\left(X_{n}\right)$. Then t contains a subterm s with $n=l(s)>c v(s)$ and there are words u and v (the empty word λ is also possible for u as well as for v) such that $t=u s v$. Since $s \approx z^{n} \in I d V$ we have $t \approx u z^{n} v \in I d V$. The repeated application of $x y^{n-1} \approx x^{n-1} y \approx z^{n} \in I d V$ to $u z^{n} v$ gives finally $u z^{n} v \approx z^{n}$, i.e., $t \approx z^{n} \in$ $I d V$. This shows that any $\sigma \in \operatorname{Neer}(n)$ is V-equivalent to $\sigma_{x_{1}^{n}}$.

Let $u \approx v \in I d V$. If $u=v$ then clearly $\widehat{\sigma}_{x_{1}^{n}}[u] \approx \widehat{\sigma}_{x_{1}^{n}}[v] \in I d V$. If $u \neq v$ and $u \approx v$ is a normal identity of V then there are natural numbers $r, s \geq 1$ such that $\widehat{\sigma}_{x_{1}^{n}}[u] \approx u_{1}^{n^{r}}$ and $\widehat{\sigma}_{x_{1}^{n}}[v] \approx v_{1}^{n^{s}}$ where $u_{1}\left(v_{1}\right)$ is the first letter in u (in v). From $x y^{n-1} \approx z^{n} \in I d V$ it follows $x^{n} \approx z^{n} \in I d V$ and thus $u_{1}^{n^{r}} \approx v_{1}^{n^{s}} \in I d V$, i.e., $\widehat{\sigma}_{x_{1}^{n}}[u] \approx \widehat{\sigma}_{x_{1}^{n}}[v] \in I d V$. Since only normal identities are satisfied in V by Lemma 7 we can conclude that V is $N \operatorname{per}(n)$-solid.

After the following lemma we are able to characterize all presolid varieties of n-semigroups.

Lemma 9. Let $3 \leq n \in 2 \mathbb{N}+1, V$ be a variety of n-semigroups with $V \subseteq \widetilde{V}_{n}$, and $\sigma \in \operatorname{Per}(n)$. Then there holds

$$
\widehat{\sigma}\left[x_{1} \ldots x_{i}\left(x_{i+1} \ldots x_{i+n}\right) x_{i+n+1} \ldots x_{2 n-1}\right] \approx x_{1} \ldots x_{2 n-1} \in I d V
$$

for $0 \leq i \leq n-1$.
Proof. Let $\pi \in S_{n}$. Without loss of generality let $i=0$. Then
(1) $x_{\pi(1)} \ldots x_{\pi(n)} x_{n+1} \ldots x_{2 n-1} \approx x_{1} \ldots x_{2 n-1} \in I d V$ or
(2) $x_{\pi(1)} \ldots x_{\pi(n)} x_{n+1} \ldots x_{2 n-1} \approx x_{2} x_{1} x_{3} \ldots x_{2 n-1} \in I d V$ by Lemma 5 . We put $y_{1}:=x_{1} \ldots x_{n}$ in case (1) ($y_{1}:=x_{2} x_{1} x_{3} \ldots x_{n}$ in case (2)) and $y_{j}:=x_{n+j-1}$ for $2 \leq j \leq n$. Using the identities of \widetilde{V}_{n} it is easy to check that $y_{\pi(1)} \ldots y_{\pi(n)} \approx x_{1} \ldots x_{2 n-1} \in I d V$ in case (1) and $y_{\pi(1)} \ldots y_{\pi(n)} \approx$ $x_{n+1} x_{2} x_{1} x_{3} \ldots x_{n} x_{n+2} \ldots x_{2 n-1} \in I d V$ in case (2), respectively. Further, we have $x_{n+1} x_{2} x_{1} x_{3} \ldots x_{n} x_{n+2} \ldots x_{2 n-1} \approx x_{1} x_{n+1} x_{2} x_{3} \ldots x_{n} x_{n+2} \ldots x_{2 n-1}$ $\approx x_{1} x_{2} x_{3} \ldots x_{n} x_{n+1} x_{n+2} \ldots x_{2 n-1} \in I d V$ (since n is an odd number). This shows that $\widehat{\sigma}_{\pi}\left[\left(x_{1} \ldots x_{n}\right) x_{n+1} \ldots x_{2 n-1}\right] \approx S_{2 n-1}^{n}\left(\sigma_{\pi}(f), S_{2 n-1}^{n}\left(\sigma_{\pi}(f)\right.\right.$, $\left.\left.x_{1}, \ldots, x_{n}\right), x_{n+1}, \ldots, x_{2 n-1}\right) \approx x_{1} \ldots x_{2 n-1} \in I d V$.

Theorem 10. Let $n \geq 3$ be a natural number and V be a nontrivial variety of n-semigroups. Then V is Pre(n)-solid iff the following statements hold:
(i) $V \subseteq V_{n}$;
(ii) If $x_{\pi(1)} \ldots x_{\pi(n)} \approx x_{1} \ldots x_{n} \in I d V$ for some $\pi \in S_{n}$ then $x_{\pi \circ s(1)} \ldots$ $x_{\pi \circ s(n)} \approx x_{s(1)} \ldots x_{s(n)} \in I d V$ for all $s \in S_{n} ;$
(iii) If $n \in 2 \mathbb{N}$ then $x_{1} \ldots x_{2 n-1} \approx x_{\pi(1)} \ldots x_{\pi(2 n-1)}$ for all $\pi \in S_{2 n-1}$.

Proof. Suppose that V is $\operatorname{Pre}(n)$-solid. Then $V \subseteq \widetilde{V}_{n}$ by Proposition 3. Further, V is $N \operatorname{per}(n)$-solid since $\operatorname{Nper}(n) \subseteq \operatorname{Pre}(n)$. Then by Proposition 8 we get $V \subseteq \widetilde{W}_{n}$. Therefore, $V \subseteq \widetilde{V}_{n} \cap \widetilde{W}_{n}=V_{n}$ and it holds (i). Suppose that $x_{\pi(1)} \ldots x_{\pi(n)} \approx x_{1} \ldots x_{n} \in I d V$ for some $\pi \in S_{n}$. Further let $\rho \in$ S_{n}. Then $\sigma_{\rho} \in \operatorname{Pre}(n)$. Since V is $\operatorname{Pre}(n)$-solid we have $\widehat{\sigma}_{\rho}\left[x_{1} \ldots x_{n}\right] \approx$ $\widehat{\sigma}_{\rho}\left[x_{\pi(1)} \ldots x_{\pi(n)}\right] \in I d V$, i.e., $x_{\pi \circ \rho(1)} \ldots x_{\pi \circ \rho(n)} \approx x_{\rho(1)} \ldots x_{\rho(n)} \in I d V$. This shows (ii). Finally, (iii) it follows from Lemma 4.

Suppose that (i)-(iii) are satisfied. Let $\sigma_{t} \in \operatorname{Pre}(n)$. If $\sigma_{t} \notin \operatorname{Per}(n)$ then $t \in \widetilde{W}_{(n)}^{n p}(X)$ and $t \approx z^{n} \in I d V$ by Lemma 6, i.e., σ_{t} is V-equivalent to $\sigma_{x_{1}^{n}}$, where $\sigma_{x_{1}^{n}} \in \operatorname{Ner}(n)$. But (i) implies that V is $N \operatorname{per}(n)$-solid by Proposition 8. Thus $\widehat{\sigma}_{x_{1}^{n}}[u] \approx \widehat{\sigma}_{x_{1}^{n}}[v] \in I d V$ for all $u \approx v \in I d V$, i.e., $\widehat{\sigma}_{t}[u] \approx$ $\widehat{\sigma}_{t}[v] \in I d V$ for all $u \approx v \in I d V$. Let now $\sigma_{t} \in \operatorname{Per}(n)$ and $u \approx v \in I d V$. If $\operatorname{var}(u) \neq \operatorname{var}(v)$ then without loss of generality there is a $w \in \operatorname{var}(u) \backslash \operatorname{var}(v)$. We substitute w by x^{n} and get $\widetilde{u} \approx v \in I d V$ from $u \approx v \in I d V$ where x^{n} is a subterm of \widetilde{u}, i.e., $\widetilde{u} \in \widetilde{W}_{(n)}^{n p}(X)$. Then by Lemma 6 we have $\widetilde{u} \approx x^{n} \in I d V$, i.e., $u \approx v \approx x^{n} \in I d V$. If $l(u)>c v(u)$ or $l(v)>c v(v)$ then $u \in \widetilde{W}_{(n)}^{n p}(X)$ or $v \in \widetilde{W}_{(n)}^{n p}(X)$ and thus $u \approx v \approx x^{n} \in I d V$ by Lemma 6. Consequently, if $\operatorname{var}(u) \neq \operatorname{var}(v)$ or $l(u)>c v(u)$ or $l(v)>c v(v)$ then $u \approx v \approx x^{n} \in I d V$. If, in particular, $l(u)=c v(u)$ then $u=u_{1} \ldots u_{l(u)}$ with $u_{1}, \ldots, u_{l(u)} \in X$ and there is a $\pi \in S_{l(u)}$ such that $\widehat{\sigma}_{t}[u] \approx u_{\pi(1)} \ldots u_{\pi(l(u))}$. But from $u \approx x^{n} \in I d V$ we get by the substitution $u_{i} \mapsto u_{\pi(i)}$ for $1 \leq i \leq l(u)$ that $u_{\pi(1)} \ldots u_{\pi(l(u))} \approx x^{n} \in I d V$, i.e., $\widehat{\sigma}_{t}[u] \approx x^{n} \in I d V$. If, in particular, $l(v)=c v(v)$ then we get $\widehat{\sigma}_{t}[v] \approx x^{n} \in I d V$ in the same matter. If $l(u)>c v(u)(l(v)>c v(v))$ then $u \in \widetilde{W}_{(n)}^{n p}(X)\left(v \in \widetilde{W}_{(n)}^{n p}(X)\right)$ and it is easy to check that $\widehat{\sigma}_{t}[u] \in \widetilde{W}_{(n)}^{n p}(X)\left(\widehat{\sigma}_{t}[v] \in \widetilde{W}_{(n)}^{n p}(X)\right)$, too. Then $\widehat{\sigma}_{t}[u] \approx x^{n} \in \operatorname{IdV}\left(\widehat{\sigma}_{t}[v] \approx x^{n} \in I d V\right)$ by Lemma 6. Consequently, $\widehat{\sigma}_{t}[u] \approx x^{n} \approx \widehat{\sigma}_{t}[v] \in I d V$. The remaining case is $\operatorname{var}(u)=\operatorname{var}(v)$ and $l(u)=c v(u)$ and $l(v)=c v(v)$. We put $s:=l(u)$ and $\left\{u_{1}, \ldots, u_{s}\right\}=$ $\operatorname{var}(u)=\operatorname{var}(v)$. Because of Lemma 9 (if $n \in 2 \mathbb{N}+1$) and of (iii) (if $n \in 2 \mathbb{N}$), respectively, we have $\widehat{\sigma}_{t}\left[x_{1} \ldots x_{i-1}\left(x_{i} \ldots x_{i+n-1}\right) x_{i+n} \ldots x_{2 n-1}\right] \approx$ $\widehat{\sigma}_{t}\left[x_{1} \ldots x_{j-1}\left(x_{j} \ldots x_{j+n-1}\right) x_{j+n} \ldots x_{2 n-1}\right] \in I d V$ for $1 \leq i<j \leq n$. Therefore we can assume that

$$
\begin{gathered}
\left.u=\left(\ldots\left(u_{1} \ldots u_{n}\right) u_{n+1} \ldots u_{2 n-1}\right) \ldots u_{s-1} u_{s}\right) \\
\left.v=\left(\ldots\left(u_{\pi(1)} \ldots u_{\pi(n)}\right) u_{\pi(n+1)} \ldots u_{\pi(2 n-1)}\right) \ldots u_{\pi(s-1)} u_{\pi(s)}\right)
\end{gathered}
$$

for some permutation $\pi \in S_{s}$. Further there is a $\rho \in S_{n}$ such that $\sigma_{t}=\sigma_{\rho}$. If $s=1$ we have obviously $\widehat{\sigma}_{\rho}[u] \approx \widehat{\sigma}_{\rho}[v] \in I d V$. If $s=n$ then $\widehat{\sigma}_{\rho}[u] \approx$ $u_{\rho(1)} \ldots u_{\rho(n)}$ and $\widehat{\sigma}_{\rho}[v] \approx u_{\pi \circ \rho(1)} \ldots u_{\pi \circ \rho(n)}$. By (ii) from $x_{\pi(1)} \ldots x_{\pi(n)} \approx$ $x_{1} \ldots x_{n} \in I d V$ it follows $x_{\pi \circ \rho(1)} \ldots x_{\pi \circ \rho(n)} \approx x_{\rho(1)} \ldots x_{\rho(n)}$ $\in I d V$, i.e., $\widehat{\sigma}_{\rho}[u] \approx \widehat{\sigma}_{\rho}[v] \in I d V$. Let now $s>n$. Then there is a $\phi \in S_{s}$ such that $\widehat{\sigma}_{t}[u] \approx u_{\phi(1)} \ldots u_{\phi(s)}$ and $\widehat{\sigma}_{t}[v] \approx u_{\pi \circ \phi(1)} \ldots u_{\pi \circ \phi(s)}$.

By Lemma 5 we have $\widehat{\sigma}_{t}[u] \approx u_{1} \ldots u_{s}$ or $\widehat{\sigma}_{t}[u] \approx u_{2} u_{1} u_{3} \ldots u_{s}=: \widetilde{u}$. If $\widehat{\sigma}_{t}[u] \approx u$, i.e., $x_{\phi(1)} \ldots x_{\phi(s)} \approx u_{1} \ldots u_{s} \in I d V$ then by the substitution $u_{i} \mapsto u_{\pi(i)}$ for $1 \leq i \leq s$ we get $u_{\pi \circ \phi(1)} \ldots u_{\pi \circ \phi(s)} \approx u_{\pi(1)} \ldots u_{\pi(s)} \in I d V$, i.e., $\widehat{\sigma}_{t}[v] \approx v$, and from $u \approx v \in I d V$ it follows $\widehat{\sigma}_{t}[u] \approx \widehat{\sigma}_{t}[v] \in I d V$. If $\widehat{\sigma}_{t}[u] \approx \widetilde{u}$, i.e., $u_{\phi(1)} \ldots u_{\phi(s)} \approx u_{2} u_{1} u_{3} \ldots u_{s}$ then by the same substitution we get $u_{\pi \circ \phi(1)} \ldots u_{\pi \circ \phi(s)} \approx u_{\pi(2)} u_{\pi(1)} u_{\pi(3)} \ldots u_{\pi(s)}=: \widetilde{v}$, i.e., $\widehat{\sigma}_{t}[v] \approx \widetilde{v} \in$ $I d V$. Moreover, from Lemma 5 we get

$$
\begin{aligned}
& u_{\pi(2)} u_{\pi(1)} u_{\pi(3)} \ldots u_{\pi(s)} \approx u_{1} \ldots u_{s} \text { or } \\
& u_{\pi(2)} u_{\pi(1)} u_{\pi(3)} \ldots u_{\pi(s)} \approx u_{2} u_{1} u_{3} \ldots u_{s}
\end{aligned}
$$

as well as

$$
\begin{aligned}
& u_{\pi^{-1}(2)} u_{\pi^{-1}(1)} u_{\pi^{-1}(3)} \ldots u_{\pi^{-1}(s)} \approx u_{1} \ldots u_{s} \text { or } \\
& u_{\pi^{-1}(2)} u_{\pi^{-1}(1)} u_{\pi^{-1}(3)} \ldots u_{\pi^{-1}(s)} \approx u_{2} u_{1} u_{3} \ldots u_{s} .
\end{aligned}
$$

i.e.,

$$
\begin{gathered}
u_{2} u_{1} u_{3} \ldots u_{s} \approx u_{\pi(1)} \ldots u_{\pi(s)} \text { or } \\
u_{2} u_{1} u_{3} \ldots u_{s} \approx u_{\pi(2)} u_{\pi(1)} u_{\pi(3)} \ldots u_{\pi(s)} .
\end{gathered}
$$

This shows $\widetilde{v} \approx u$ or $\widetilde{v} \approx \widetilde{u}$ as well as $\widetilde{u} \approx v$ or $\widetilde{u} \approx \widetilde{v}$. This implies $\widetilde{v} \approx \widetilde{u}$ or both $\widetilde{v} \approx u$ and $\widetilde{u} \approx v$ hold in V. Since $u \approx v \in I d V$ we have altogether $\widetilde{v} \approx \widetilde{u} \in I d V$ and thus $\widehat{\sigma}_{t}[u] \approx \widehat{\sigma}_{t}[v] \in I d V$ because of $\widehat{\sigma}_{t}[u] \approx \widetilde{u} \in I d V$ and $\widehat{\sigma}_{t}[v] \approx \widetilde{v} \in I d V$.

Let us apply Theorem 10 for the case $n=3$. We obtain the following characterization of all presolid varieties of 3 -semigroups.

Corollary 11. A nontrivial variety of 3 -semigroups is Pre(3)-solid iff $V \subseteq \operatorname{Mod}\{(x y z) w t \approx x(y z w) t \approx x y(z w t) \approx y z x w t \approx x z w y t \approx x y w t z$, $\left.x y x \approx x^{2} y \approx x y^{2} \approx z^{3}\right\}=: W$ and it holds the following condition:
(*) If $x_{1} x_{2} x_{3} \approx x_{\pi(1)} x_{\pi(2)} x_{\pi(3)} \in I d V$ for some $\pi \in\{(12),(13),(23)\}$
then $x_{1} x_{2} x_{3} \approx x_{\rho(1)} x_{\rho(2)} x_{\rho(3)} \in I d V$ for all $\rho \in S_{3}$.

Proof. Suppose that V is $\operatorname{Pre}(3)$-solid. Then the conditions (i) and (ii) of Theorem 10 are satisfied. From (i) it follows that $x y z w t \approx y z x w t \approx x z w y t \approx$ $x y w t z \in I d V$ and $x y x \approx x^{2} y \approx x y^{2} \approx z^{3} \in I d V$. Hence $V \subseteq W$. Using (ii) we can verify condition $(*)$: If $\pi=(13)$, i.e., $x_{1} x_{2} x_{3} \approx x_{3} x_{2} x_{1} \in I d V$ then $x_{2} x_{1} x_{3} \approx x_{2} x_{3} x_{1} \in I d V$ (for $s=(12)$). Both identities provide $x_{1} x_{2} x_{3} \approx$ $x_{1} x_{3} x_{2} \approx x_{2} x_{3} x_{1} \approx x_{2} x_{1} x_{3} \approx x_{2} x_{3} x_{1} \approx x_{1} x_{3} x_{2} \in I d V$. If $\pi=(12)$, i.e., $x_{1} x_{2} x_{3} \approx x_{2} x_{1} x_{3} \in I d V$ then $x_{1} x_{3} x_{2} \approx x_{2} x_{3} x_{1} \in I d V$ (for $s=(23)$). If $\pi=(23)$, i.e., $x_{1} x_{2} x_{3} \approx x_{1} x_{3} x_{2} \in I d V$ then $x_{2} x_{1} x_{3} \approx x_{3} x_{1} x_{2} \in I d V$ (for $s=(12))$. In the latter two cases, we conclude in the same matter as before.

Suppose now that $V \subseteq W$ and $(*)$ is satisfied. Since $V \subseteq W$, the condition (i) of Theorem 10 holds. We have now to show that also condition (ii) is satisfied. For this let $\pi \in S_{3}$. If $\pi \in\{(1),(12),(13),(23)\}$ then the condition is satisfied by ($*$). If $\pi=(123)$, i.e., $x_{1} x_{2} x_{3} \approx x_{2} x_{3} x_{1} \in I d V$ then we have to check that also $x_{2} x_{1} x_{3} \approx x_{3} x_{2} x_{1} \in I d V, x_{3} x_{2} x_{1} \approx x_{1} x_{3} x_{2} \in I d V$, $x_{1} x_{3} x_{2} \approx x_{2} x_{1} x_{3} \in I d V, x_{2} x_{3} x_{1} \approx x_{3} x_{1} x_{2} \in I d V$, and $x_{3} x_{1} x_{2} \approx x_{1} x_{2} x_{3} \in$ $I d V$. Obviously, these five equations are consequences of the given identity $x_{1} x_{2} x_{3} \approx x_{2} x_{3} x_{1} \in I d V$. If $\pi=(132)$ the we conclude in the same matter. This shows (ii). Condition (iii) can be neglected since 3 is odd. Altogether, V is $\operatorname{Pre}(3)$-solid by Theorem 10.

References

[1] V. Budd, K. Denecke and S.L. Wismath, Short-solid superassociative type (n) varieties, East-West J. of Mathematics 3 (2) (2001), 129-145.
[2] W. Dörnte, Untersuchungen über einen verallgemeinerten Gruppenbegriff, Math. Z. 29 (1928), 1-19.
[3] K. Denecke and Hounnon, All solid varieties of semirings, Journal of Algebra 248 (2002), 107-117.
[4] K. Denecke and J. Koppitz, Pre-solid varieties of semigroups, Archivum Mathematicum 31 (1995), 171-181.
[5] K. Denecke and J. Koppitz, Finite monoids of hypersubstitutions of type $\tau=$ (2), Semigroup Forum 56 (1998), 265-275.
[6] K. Denecke and M. Reichel, Monoids of hypersubstitutions and M-solid varieties, Contributions to General Algebra 9 (1995), 117-126.
[7] K. Denecke, J. Koppitz and S.L. Wismath, Solid varieties of arbitrary type, Algebra Universalis 48 (2002), 357-378.
[8] K. Denecke and S.L. Wismath, Hyperidentities and clones, Gordon and Breach Scientific Publisher, 2000.
[9] J. Koppitz, Hypersubstitutions and groups, Novi Sad J. Math. 34 (2) (2004), 127-139.
[10] L. Polák, All solid varieties of semigroups, Journal of Algebra 219 (1999), 421-436.
[11] J. Płonka, Proper and inner hypersubstitutions of varieties, p. 106-115 in: "Proceedings of the International Conference: 'Summer School on General Algebra and Ordered Sets', Olomouc 1994", Palacký University, Olomouc 1994.

Received 15 July 2005

