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Introduction

In the set of all transformations of the set of finite words over given alpha-
bet we distinguish a subset of the automaton mappings, i.e. transformations
induced by (finite or infinite) Mealy automata . Although both sets are un-
countable, not every function f : X* — X* is defined by certain automaton.

In sixties of the XX century has been indicated (e.g., in [3]) that after
addition a new symbol to the alphabet, arbitrary transformation can be
extended to an automaton mapping, that uniquely determines the initial
transformation. Moreover, an effective method for such constructions has
been established (see [3] and [1]).

Since mentioned extension is not unique, we define three different
possibilities of the construction. The main result of this paper is
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Theorem 1. Let Sg(f) be a semigroup generated by the restrictions of
the automaton extension mapping f. The semigroup Sg(f) is finite iff f is
finite-state and nilpotent.

The contents are organized as follows. In Section 1 we list the basic notations
and recall a notions of a Mealy automaton and a Rabin-Scott automaton. In
Section 2 we define a notion of an automaton extension of the transforma-
tion. In Section 3 we introduce semigroups generated by extension mappings.
Section 4 contains proof of the theorem.

1. Preliminaries

Let X be an alphabet, and X™* be the free monoid over X with an empty

word ¢ as a neutral element. We shall write wv for the product of u,v € X*
k

and u* for 7...a. The length of the word u is denoted by |u|. The word u
is a prefiz of the word v (denoted by u < v) if v = uw for the certain word
w. The word v is a segment of u if there exist words uq,us € X* such that
U = U1vUu.

An initial Mealy-type automaton (see, e.g., [4], [5]) over the alphabet X
is a tuple

A = (Q7QO7X7 57 )‘)

which consists of the following data:

> a set @ of the internal states, Q # (;

> a distinguished state g € Q called initial state;
> an alphabet of the automaton, X # (J;

> a next-state function § : Q X X — Q;

> an output function A: Q x X — X.

A tuple A = (Q, qo, X, 0, \) is a partial Mealy automaton if either § or A is a
partial function. The automaton A is finite if the sets () and X are finite.
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We often use a notation

z/y
qi — qj

instead of

3(gis ) = qj, MNgi,z) =y.

The next-state function and the output function of the automaton A =
(Q,q0,X,0, ) can be extended to the set @ x X* by the following recurrent
equalities:

6(Qa 6) =49, 5((1’ ux) = 5(5((1’ u)? :E) >
Mg, e) =¢, Mg, uz) = A(d(q,u), ),

where x € X and u € X*. An initial automaton A defines the mapping
fa: X" — X* as follows:

fale) =€, falzr...zk) = Mqo, z1)A(q0, z122) . . . AM(q0, 1 - - - k) -

If A is a partial automaton, then f4 is a partial function.

Definition 1 ([8]). A function f : X* — X* is called an (finite-state)
automaton mapping if there exists an (finite) initial automaton .4 such that

f=rfa

Definition 2. A function f : X* — X* is called a partial automaton
mapping if there exists a partial initial automaton A such that f = f4.

A Rabin-Scott automaton is a tuple
A= (Q’quT’Xa 6) )

which is just as the Mealy automaton, except that the output function A is
replaced by the set T' C @ which is set of terminal nodes (or accept states).
A set of the words

L(A) ={ue X" :0(q,u) €T}

is known as the language recognizable by the automaton A.
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The language L C X™ is said to be regular if there exists a finite automaton
recognizing L. For more information refer to [9] and [2].

2. Automaton extension of mapping

Let f: X* — X* be a function that satisfies f(¢) =e. Let X, = X U{a},
a ¢ X be the extended alphabet. Let ¢ : X? — X* be a homomorphism
given by

t(a) = ¢, t(z) ==, reX.

Definition 3. An automaton mapping f: X} — X7 is called an automaton
extension mapping (or simply an extension) of f : X* — X* if there exists an
embedding py : X* — X7 such that the following diagram is commutative:

ue X* 2 fu) e X*
pyl Tt

o~

o~

u e Xk nL (u') e Xk

The extension fof an arbitrary function f : X* — X* will be defined in two
steps:

1. a partial extension X} — X is defined on a certain fixed subset M C X;

2. the domain of the obtained function is extended to the monoid X.

For the construction related to the first step we will apply a method described
in [3], p. 19.

Definition 4. For every u € X*, we define
pg(u) = walf @l
and we introduce the set

M={eX}: v <pru), ue X*}.



SEMIGROUPS DEFINED BY AUTOMATON EXTENSION MAPPINGS 107

The mapping f: M — X7 is defined as follows:

a) if ' = ual/®I 4 € X* then

flu) = al"lf (),

b) if o < uaf@! then

where w’ is chosen to satisfy
w <af(u) and |u'| =[]

~

For u' = p¢(u), the properties ¢t(u') = w and ¢(f(uv')) = f(u) hold. Thus,
the diagram from the Definition 3 is commutative.

Proposition 1. The extension f: Xr — X is a partial automaton map-
ping over the alphabet X, .

Proof. See [6]. |

Example 1. Consider a function f: X* — X* X = {0,1} defined by

g, if u=e,
flu)=< 0, if |u| iseven, |u| >0,
11, if |u| is odd.

We see that f is not an automaton mapping since it does not preserve either
lengths nor has the common prefix property (see [4]). Since f(01) = 0 and
£(101) = 11, for the extension mapping we have

~ ~

f(0la) = aal and f(10laa) = aaall.
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It can be seen that for the arguments of the extension the letter « is utilized
to terminate a sequence of letters from the set X, whereas for the values it
plays role of an “empty” symbol while the automaton waits for completing
the input word.

We introduce three different methods for extending f on the set X7,
which will be referred to as ‘simple’, ‘plain’ and ‘cyclic’.

Definition 5. A simple extension of the transformation f : X* — X™ is
the mapping fo : X2 — X defined by:

(i) %|M = f, where f is the automaton extension of f and M is the set
established in Definition 4,

(i) fo(a*v') = akall,
(iii) fo(ua/®@ly) = alul f(w)alv'l,

(iv) if m+ /| > |f(u)], then

fo(uamv') = alu‘f(u)oz"

and n is chosen to satisfy

m+ '] = |f(u)| +n,
(v) if m+ || <|f(u)|, then

~

folua™v") = al*ly

and v is chosen to satisfy

v fu), l=m+],
where u,v € X* and v/ € X}.

Definition 6. A plain extension of the transformation f : X* — X* is the
mapping f1 : X2 — X} defined similarly to the simple extension, only with
condition (ii) changed to

o~

fila™) = " i)
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The automaton mappings fo and fl translate only the first segment u € X*
from the input word and ignore appended word v’ by treating it as a sequence
of “empty” symbols. Extension fo performes this translation only if u is a
prefix of the input word.

For the next definition recall that arbitrary word v' € X7 can be uniquely
written as

v = aPougaFruga®? L ek, u; € X,

where k‘o,k‘n > 0 and k‘l, .. .,k‘n,1 > 1.

Definition 7. A cyclic extension of the transformation f: X* — X* is the
mapping fa : X} — X defined by:

(i) f2|M = f, where f is the automaton extension of f and M is the set
established in Definition 4,

(i) Jalak) = o,
(it}) folualf@lak) = allf(u)ak,

(iv) if m < |f(u)|, then

o~

Fa(ua™) = all,

where v is chosen to satisfy

Ugf(u)a ’U’:m7

~

(v) folv') = @k fa(uraf) fa(upal?) ... fa(una®r),

where v/ = o*ou;aF uga®? .. w0k

The mapping obtained in this way translates independently every segment
of the form u;a*:.
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Proposition 2.

1. For every function f : X* — X*, f(e) = e the following conditions
hold:

a) fo, fl, fg are full defined automaton mappings over the alphabet
Xz,

b) fo, f1, f2 are pairwise distinct unless f is trivial (i.e., f(u) =¢€ for
allu e X*).

2. For every f,g: X* — X, such that f # g, we have
fo#d0,  Gi#h.  @#f
Proof. See [6]. ]

From now on, we consider extensions f defined on infinite words as follows

o~

. * W * W
[ X ¥ — X o,

pr(u) = uolf Wl = ya®,

f(u') = alu‘f(u)oz“’, u' = pp(u).

In this case we see that a sequence o = aq... is the only fixed point.

Example 2. Let X = {1} and

g, if u=e,
f(u)=< 1, if |u| is even,and |u| > 0,
11, if |u| is odd.

Extensions fo, fl, fQ are depicted respectively on Figure 1, 2 and 3.

In case of ﬁ, state f. on the left side is not removed in order to show
similarity between extensions. States f., f1, fo are related to the Rabin-Scott
part of the automaton as it is indicated in the proof of Lemma 8.
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Figure 1. Automaton fo

Figure 2. Automaton J?l

Figure 3. Automaton fg
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2.1. Nilpotent extensions
Fix X and consider the monoid T,(X*) of all mappings f : X* — X*
satisfying f(e) = e. A mapping 0: X* — X* defined by

O(u) = ¢, for ue X*,

is a zero of the monoid. R
Similarly, the monoid generated by all extensions f : XX a¥ — Xla“,
f € T.(X*) contains a mapping 0 defined by

0(u) = a®, for ue X;a*,
which is a zero of the monoid. This follows from the fact that o* is the
fixed point of every f (see [7]). Thus, the question whether the extension f
is nilpotent can be asked.

For any nilpotent element x of the semigroup with zero, the smallest
number k such that ¥ = 0 will be denoted by nil(z).

Proposition 3. For every mapping f : X* — X* with f(e) = ¢, the
extension fo is nilpotent and nil(fy) < 2.

Proof. Any value of the mapping fo is of the form o/, where Ve Xta¥
and by definition we have f (aw') = a¥. Therefore, for fy # 0, we have
Dll(fo) =2 |

Proposition 4. The extension fl 1s nilpotent if and only if the mapping f
1s nilpotent. If f is nilpotent, then

nil(f1) = nil(f).
Proof. See |7]. ]

Proposition 5. The extension fg is nilpotent if and only if
1. f is nilpotent

and
2. the lengths of the sequences

UL, Uy ..oy Uy, where up < f(ug—1) for k=2,...m,

have a common upper bound.
If f5 is nilpotent, then

nil(f3) > nil(f).
Proof. See |7]. ]
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3. Semigroup defined by an automaton extension
mapping

Recall that an automaton mapping f : Y* — Y™ defines its restrictions f,,
u € Y™ (see [4], [8]) according to the equality

f(uv) :f(u)fu(v)v veEY”.

Definition 8. For an automaton mapping f : Y* — Y™ we define a trans-
formation semigroup generated by its restrictions

Sg(f) = (fu:ue¥™).

Another equivalent definition can be established in terms of the functions
related to states of the minimal initial automaton A(f) defining f. Therefore,
in order to simplify notation, we shall not distinguish between state d(qg, u)
of the automaton A(f) and the restriction f,.

We introduce the following notations. For a subset F' of the semigroup,
we define

F'=F, F'=F"'F

)

and
Ft=prFruprtiy. ...

The semigroup generated by F' will be denoted as (F). We also use the
following notation (f;f;)(x) = f;(fi(x)).

Lemma 6. Let fq,..., fr be partial or full defined transformations of some
set A. If there exists a number n such that every composition f € {f1,..., fr}"
has finite image f(A), then the semigroup {(f1,..., fr) is finite.

Proof. Let F ={f1,...,fx} and
B=J{f(A):feF}
From assumptions of the lemma, the sets f(A) are finite and therefore so is
B. Furthermore, every element g € F™" admits a decomposition
g=rh, feF", he(F)u{ld},
g: A . BB

and there are finite number of possibilities for h since it is a mapping on a
finite set. Therefore, F™* and (f1,..., fx) are finite sets. [
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4. Proof of the main theorem

~

Since we need to discuss the problem whether the semigroup Sg(f) is finite,
we assume X is a finite set and we will use the criterion for f to be a finite-
state automaton mapping.

Proposition 7. Let f: Xr — XX be the extension of the transformation
f: X* — X*. The extension f is a finite-state automaton mapping if and
only if the following conditions are satisfied:

1. f(X*) is a finite set

and
2. the inverse image f~'(u) is a regular language for each u € f(X*).

Proof. See [6]. ]

Lemma 8. Let f : X* — X be a mapping satisfying f(e) = . The
semigroup Sg(fo) is finite iff fo is finite-state.

Proof.

(=) Obviously, a finite number of generators is obtained iff fo is
finite-state.

(<) We may divide the set of the states of automaton A(fy) (that is
generators of Sg(fo)) in the following way:

fo is the state that satisfies a condition

fo(v/) — aw
for every v’ € X,a,

{fe, f1,---, fx} are states related to the Rabin-Scott part of A(fo), ie.,
satisfying

fi(z) =

for all + € X and f. is an initial state which corresponds to the

o~

extension fj.

Moreover, {g1,...,9m} are remaining states of the automaton. It can
be seen that they are right zeros of the semigroup Sg(fo).
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It follows that:

1. the functions fo, 91, ., gm (and consequently all compositions contain-
ing one or more of them) have finite images;

2. the functions f., f1,..., fr may not have finite images, however from
o, if w=a"ua®, ue X*, n>1,
a"fu)a®, if w=wua®, uweX* u#eg
v, if w=ad"ua*,ue X*n>1,

filw) = .
alvlya® if w=ua*, ueX* u#e,

where all occurences of v denote certain words from f(X*) that depend
on u and the particular generator f;.

It can be seen that images of f. f., f-f;, fife and f;f; are words of the form
either a® or

ava® with n <max{|f(u)| : ue X"},

where v is either a word from f(X*) or a prefix of such a word. Therefore,
images of the mappings are finite. R
Using the Lemma 6 with n = 2 we obtain Sg(fp) is finite. [

Lemma 9. Let f : X* — X be a mapping satisfying f(e) = . The
semigroup Sg(f1) is finite iff f1 is finite-state and nilpotent.

Proof.

(=) A finite number of generators is obtained iff f; is a finite-state. Also
f1 is nilpotent, for otherwise a semigroup (ﬁ) is infinite.

(<) We can divide states of A(f;) similarly as in the proof of Lemma 8.
Our situation differs only with

6(f€,04) = fe

instead of

(5(f5704) = fO .
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Therefore, possible images of the generators are
f-(a™ua®) = ™ f(uw)a®, n >0

va, if w=ca"ua®,ueX*n>1,
filw) =
alvlya® if w=ua”,u€ X" u#e,
where occurences of v represent certain words from f(X*) that depend on
u and the particular generator f;. Omitted generators g; have images of the
form va®, where v < w for certain w € f(X*).
Let S = Sg(f1), M = max{|f(u)| : v € X*} and K = nil(f;). From
above scheme it follows that values of the functions h € S are of the form

a"va” for n >0,

where v is either a word from f(X™*) or a prefix of such a word.

In case of h € S'f;, we have n < M, thus, all compositions containing f;
have finite images.

In case of h € Sg;, we have n = 0 and |v| < M, thus, all compositions
containing g; have finite images.

The remaining cases are h = ff for ¥k = 1,2,.... From assumption
K= 0, it is understood that the mappings fak, k > K have finite images.

We proved that every mapping h € SK* has finite image, therefore,
using the Lemma 6 with n = K, we obtain that the semigroup Sg(fl) is
finite. [ |

Lemma 10. Let f : X* — X* be a mapping satisfying f(e) = €. The
semigroup Sg(f2) is finite iff fo is a finite-state and nilpotent.

Proof.

(=) A finite number of generators is obtained iff fo is a finite-state. Also
fg is nilpotent, for otherwise a semigroup (fg> is infinite.

(<) From Definition 7, every segment ;o is translated to al%lv;a™,
where v < f(u;) and |v;| + n; = k;. This property concerns not only fy but
also every its restriction.

Let S = Sg(fy), M = max{|f(u)] : v € X*}, K = nil(fy) and ' €
X*a”. Denoting the set of the restrictions of fg by F, mapping h € S is a
composition

h=hihs...hy, where h; € F'.
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Every segment u; of u' produces the occurence of ul(-l) in hy(u'), then the
©))

occurence of u;” in ha(h;(u')), and so on. We obtain a sequence

oD where ul(-k) <f (ul(-k_l))
which satisfies ugk)
Therefore, for every h € SK+ the value h(u’) does not depend on
segments u; of the word «'. It is easy to see that h(u') depends only on
the length of the prefix o™ of the word «'. It follows that in a word h(u’)
the positions starting from K - M are occupied by the symbol « and, thus,
h has a finite image.
Using Lemma 6 with n = K, we obtain Sg(f2) is finite. ]

= ¢ starting from k = K, since fg is nilpotent.

Proof of the main theorem.
Desired results are established in Lemmas 8-10. The necessary properties of
the nilpotent extensions are given in Propositions 3-5. [ |

REFERENCES

[1] K. Culik, II, Construction of the Automaton Mapping, (Russian), Apl. Mat.
10 (1965), 459-468.

[2] S. Eilenberg, Automata, Languages and Machines, Volume A, Academic
Press, New York 1974.

[3] V.M. Glushkov, Abstract theory of automata, (Russian), Uspehi Mat. Nauk
16 no. 5 (101), (1961), 3-62.

[4] R.I. Grigorchuk, V.V. Nekrashevich and V.I. Sushchanskii, Automata,
Dynamical Systems, and Groups, Proc. Steklov Inst. Math. 231 (2000),
128-203.

[5] B. Mikolajczak et al. (eds.) , Algebraic and Structural Automata Theory, An-
nals of Discrete Mathematics, vol. 44, North-Holland Publ. Co., Amsterdam
1991.

[6] M. Osys, Automaton extensions of mappings on the set of words defined by
finite Mealy automata, Algebra Discrete Math., to appear (preprint 2005).

[7] M. Osys, Automaton extensions of transformations of free monoid over finite
alphabet (Polish), Zeszyty Nauk. Politech. Slaskiej, Seria Math.-Fiz., no. 91,
(2004).



118 M. Osvys

[8] G.N. Raney, Sequential functions, J. Assoc. Comput. Math. 5 (1958),
177-180.

[9] Y. Sheng, Regular languages, p. 41-110 in: Handbook of Formal Languages,
vol. 1, Springer-Verlag, Berlin 1997.

Received 12 May 2005
Revised 19 July 2005



