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Abstract

The aim of this paper is to describe how varieties of algebras of
type τ can be classified by using the form of the terms which build
the (defining) identities of the variety. There are several possibilities
to do so. In [3], [19], [15] normal identities were considered, i.e. iden-
tities which have the form x ≈ x or s ≈ t, where s and t contain at
least one operation symbol. This was generalized in [14] to k-normal
identities and in [4] to P -compatible identities. More generally, we
select a subset T of Wτ (X), the set of all terms of type τ , and con-
sider identities from T × T . Since any variety can be described by
one heterogenous algebra, its clone, we are also interested in the cor-
responding clone-like structure. Identities of the clone of a variety V
correspond to M -hyperidentities for certain monoids M of hypersub-
stitutions. Therefore we will also investigate these monoids and the
corresponding M -hyperidentities.
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1. Introduction

Let τ = (ni)i∈I be a type of algebras, indexed by a set I, with operation
symbols fi of arity ni. Let X = {x1, x2, x3, . . .} be a countably infinite set
of variables, and for each n ≥ 1 let Xn = {x1, x2, . . . , xn}. We denote by
Wτ (X) and Wτ (Xn) the sets of all terms, and of all n-ary terms of type τ ,
respectively. These two sets are the universes of two absolutely free algebras,

Fτ (X) :=
(
Wτ (X); (fi)i∈I

)

and

Fτ (Xn) :=
(
Wτ (Xn); (fi)i∈I

)
,

respectively. The operations fi are defined by setting

fi(t1, . . . , tni) := fi(t1, . . . , tni).

The algebras Fτ (X) and Fτ (Xn), respectively are examples of algebras of
type τ , i.e. pairs A = (A; (fA

i )i∈I), consisting of a carrier set (universe)
A and a sequence (fA

i )i∈I of operations defined on A, where fA
i is ni-ary

and where τ = (ni)i∈I is the sequence of the arities of the fA
i ’s. Let Alg(τ)

be the class of all algberas of type τ . Another operation on sets of terms
is the composition or superposition of terms which plays an important role
in universal algebra, clone theory and theoretical computer science. For
each pair of natural numbers m and n greater than zero, the superposition
operation Sn

m maps one n-ary term and n m-ary terms to an m-ary term,
so that

Sn
m : Wτ (Xn)×Wτ (Xm)n → Wτ (Xm).

The operation Sn
m is defined inductively, by setting Sn

m(xj , t1, . . . , tn) := tj
for any variable xj ∈ Xn, and

Sn
m(fr(s1, . . . , snr), t1, . . . , tn)

:= fr(Sn
m(s1, t1, . . . , tn), . . . , Sn

m(snr , t1, . . . , tn)).
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Using these operations, we form the heterogeneous or multi-based algebra

clone(τ) := ( (Wτ (Xn))n>0; (Sn
m)n,m>0, (xi)i≤n,n>0 ).

It is well-known and easy to check that this algebra satisfies the clone axioms

(C1) Sp
m

(
Z̃, Sn

m

(
Ỹ1, X̃1, . . . , X̃n

)
, . . . , Sn

m

(
Ỹp, X̃1, . . . , X̃n

))

≈ Sn
m

(
Sp

n

(
Z̃, Ỹ1, . . . , Ỹp

)
, X̃1, . . . , X̃n

)
, for m,n, p = 1, 2, 3, . . .,

(C2) Sn
m

(
λj , X̃1, . . . , X̃n

)
≈ X̃j , for 1 ≤ j ≤ n and m,n = 1, 2, 3, . . .,

(C3) Sm
m

(
X̃j , λ1, . . . , λm

)
≈ X̃j , for 1 ≤ j ≤ m and m = 1, 2, 3, . . .,

where Sp
m and Sn

m are operation symbols corresponding to the operations
Sp

m and Sn
m of clone(τ), where λ1, . . . , λm are nullary operation symbols and

where Z̃, Ỹ1, . . . , Ỹp, X̃1, . . . , X̃m are variables. The algebra clone(τ) is also
called the clone of terms of type τ .

Since later on we have to consider subalgebras and congruences of het-
erogeneous algebras, we recall these concepts. A subalgebra of clone(τ)
consists of a sequence (T (n))n>0, where T (n) ⊆ Wτ (Xn) for all n > 0 which
is closed under all operations of clone(τ). A congruence on clone(τ) is a
sequence (θn)n>0 of binary relations, where θn ⊆ Wτ (Xn)×Wτ (Xn), which
is preserved by all operations from clone(τ). For more background on het-
erogeneous algebras see [16], [1].

Since the set Wτ (Xn) of all n-ary terms of type τ is closed under the
superposition operation Sn := Sn

n , there is a homogeneous analogue of this
structure. The algebra (Wτ (Xn);Sn, x1, . . . , xn) is an algebra of type
(n + 1, 0, . . . , 0), which still satisfies the clone axioms above for the case
that p = m = n. Such an algebra is called a unitary Menger algebra of rank
n (see [22]).
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Let n-clone(τ) := (Wτ (Xn);Sn) be the reduct of the unitary Menger alge-
bra (Wτ (Xn);Sn, x1, . . . , xn) of rank n. The algebra n-clone(τ) is called a
Menger algebra of rank n.

If we consider the sequence (Wτ (Xn))n>0 together with the sequence
of operations (Sn

m)m,n>0, we obtain a heterogeneous algebra ((Wτ (Xn))n>0;
(Sn

m)m,n>0) which we denote by Menger(τ). This heterogeneous algebra is
called a Menger system (see [22]).

2. T - Identities

In [9] the authors studied the algebra (Wnf
τ (Xn);Sn), the algebra of

n-full terms of type τ and in [6], [14] the algebras of strongly full terms
and of k-normal n-ary terms are studied. All of them are subalgebras of
(Wτ (Xn);Sn). Now we generalize these results to an arbitrary subalgebra
T = (T ; (Sn

m)m,n>0) with T := (T (n))n>0 and T := ∪n>0T
(n) of the het-

erogeneous algebra Menger(τ). For any variety V of type τ , we define
IdT

nV := {s ≈ t ∈ IdV | s, t ∈ T (n)}, that is IdT
nV := IdV ∩ T (n) × T (n)

for every n > 0, where IdV is the set of all identities of V , and then
IdT V := (IdT

nV )n>0 is called the sequence of all T -identities of V . Then
IdT V = ∪n>0IdT

nV . We will also use the notation IdV := (IdnV )n>0, where
IdV is the union of the sets IdnV. i.e. IdV = ∪n>0IdnV .

Now we recall the following well-known facts:

Lemma 2.1. For any variety V of type τ, IdV is a congruence on the
algebra Menger(τ).

Proof. This follows from the fact that IdV is a fully invariant congruence
on the absolutely free algebra Fτ (X).

Now we consider subalgebras T of the algebra Menger(τ) and will prove
that the set of all T -identities of a variety V is a congruence on T . We
can use that IdV = (IdnV )n>0 is a congruence on Menger(τ) and the well-
known fact that for a congruence θ on an algebra B, and for a subalgebra
A ⊆ B, the relation θA := θ ∩ (A×A) is a congruence on A. Then we have

Theorem 2.2. For a subalgebra T = ((T (n))n>0; (Sn
m)m,n>0) of the het-

erogeneous algebra Menger(τ) and for a variety V of type τ , the sequence
IdT V is a congruence on T .
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Because of the previous theorem, we can define the quotient algebra T /IdT V
which we denote by cloneT (V ).

If A is an algebra of type τ and if s ≈ t is an equation consisting of terms
of type τ , then A |= s ≈ t means that s ≈ t is satisfied as an identity in A.
Let T be a subset of Wτ (X) and let RT be the relation between Alg(τ), the
set of all algebras of type τ , and T 2, which is defined by

RT := {(A, s ≈ t) | A ∈ Alg(τ), s, t ∈ T (A |= s ≈ t)}.

This relation induces a Galois connection (ModT , IdT ) between Alg(τ) and
T 2 where the operations ModT , IdT are defined as follows: For K ⊆ Alg(τ)
and for Σ ⊆ T 2,

IdT (K) = {s ≈ t ∈ T 2 | ∀A ∈ K(A |= s ≈ t)} and

ModT (Σ) = {A ∈ Alg(τ) | ∀s ≈ t ∈ Σ(A |= s ≈ t)}.

Clearly, the operator ModT is the restriction of the usual operator Mod to
T 2. From the properties of a Galois connection we obtain that the products
ModT IdT and IdT ModT are closure operators on the power set of Alg(τ)
and of T 2, respectively.

Now we consider the variety T (V ) := ModT IdT V for a given variety V
and IdT V := IdV ∩ T 2. It is clear that if IdV ⊂ T 2, then T (V ) = V . Since
T 2 must not be an equational theory in general, the converse is not true.

Proposition 2.3. Let T be a subset of Wτ (X) and let L(τ) be the lattice
of all varieties of type τ . Then the operator CT : L(τ) → L(τ) defined by
CT (V ) = T (V ) is a closure operator.

Proof. From IdT V ⊆ IdV there follows V = Mod Id V ⊆ ModT IdT V =
T (V ) = CT (V ). Using the fact that ModT IdT is a closure operator, we ob-
tain CT (CT (V )) = T (T (V )) = ModT IdT (ModT IdT V ) = ModT IdT V =
T (V ) = CT (V ). Finally, from V1 ⊆ V2, we have CT (V1) = T (V1) =
ModT IdT V1 = ModT (IdV1 ∩ T 2) ⊆ ModT (IdV2 ∩ T 2) = T (V2) = CT (V2).
Altogether, we obtain that CT is a closure operator.
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The set of all fixed points of CT forms a sublattice of the lattice L(τ), in
fact it is a complete lattice (see [12]). Now we are interested in the variety
Mod(T × T ).

Definition 2.4. Let T be a subset of Wτ (X). An algebra A of type τ
is called T -quasi constant algebra if there exists a term t0 ∈ T such that
tA = tA0 for all t ∈ T .

Let TQ be the class of all T -quasi constant algebras of type τ . This definition
generalizes the concept of a constant algebra introduced in [3], and that of
a quasi-constant algebra introduced in [9].

Proposition 2.5. Let T be a subset of Wτ (X). Then Mod(T × T ) = TQ.

Proof. Let A ∈ TQ. Then there exists a term t0 ∈ T such that tA = tA0 for
all t ∈ T . Let t1, t2 be arbitrary terms in T . Then tA1 = tA0 = tA2 . This means
A |= t1 ≈ t2 and hence A ∈ Mod(T × T ). Conversely, let A ∈ Mod(T × T ).
Then tA1 = tA2 for all t1, t2 ∈ T . Therefore, A ∈ TQ.

Corollary 2.6. For any variety V , we have T (V ) = V ∨ TQ.

Proof. T (V )=ModT IdT V =Mod(IdV ∩T ×T )=ModIdV ∨Mod(T ×T )
= V ∨ TQ.

We notice that a similar approach is contained in [13].

3. T -hypersubstitutions and T -hyperidentities

To study the identities in the algebra T = ((T (n))n>0; (Sn
m)m,n>0), we need

the concepts of T -hypersubstitutions and T -hyperidentities.

A hypersubstitution σ of type τ is a mapping which assigns to each
operation symbol fi of type τ an ni-ary term σ(fi) of type τ . Any hyper-
substitution σ induces a mapping σ̂ on the set Wτ (X) of all terms of type
τ , given by the following inductive definition:

(i) σ̂[xj ] := xj , if xj ∈ X is a variable,
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(ii) σ̂[fi(t1, . . . , tni)] := Sni
n (σ(fi), σ̂[t1], . . . , σ̂[tni ]),

for compound terms fi(t1, . . . , tni).

Let Hyp(τ) be the set of all hypersubstitutions of type τ . A binary oper-
ation ◦h can be defined on this set, by σ1 ◦h σ2 = σ̂1 ◦ σ2, where ◦ is the
usual composition of mappings. It is well-known that (Hyp(τ); ◦h, σid) is
a monoid, where σid is the identity hypersubstitution which is defined by
σid(fi) = fi(x1, . . . , xni) for all i ∈ I.

Let T = ((T (n))n>0; (Sn
m)m,n>0) be a subalgebra of the algebra

Menger(τ). We define HypT (τ), the set of all T -hypersubstitutions as
follows;

HypT (τ) = {σ ∈ Hyp(τ) | ∀ i ∈ I σ(fi) ∈ T and ∀ t ∈ T σ̂[t] ∈ T }.

Then we get:

Proposition 3.1. Let T be a subalgebra of the algebra Menger(τ). Then
(HypT (τ); ◦h) is a subsemigroup of the semigroup (Hyp(τ); ◦h). Moreover,
(HypT (τ) ∪ {σid}; ◦h, σid) is a submonoid of (Hyp(τ); ◦h, σid).

Definition 3.2. Let T be a subalgebra of Menger(τ) and let V be a variety
of type τ and IdT V be the set of all identities of V consisting of terms from
T , i.e., IdT V = IdV ∩ T 2. Then s ≈ t ∈ IdT V is called a T -hyperidentity
in V if σ̂[s] ≈ σ̂[t] ∈ IdT V for all σ ∈ HypT (τ). If every identity in IdT V
is satisfied as a T -hyperidentity, then the variety V is called HypT (τ)-solid;
for short, we will write T -solid.

4. T -hypersubstitutions and endomorphisms of T

There is a close connection between extensions of T -hypersubstitutions and
endomorphisms of T . This connection will be used later on to describe
identities in the quotient algebra T /IdT V .

For a hypersubstitution σ in Hyp(τ), it is well-known that the induced
mapping σ̂, regarded as a sequence σ̂ := (σ̂(n))n>0 with

σ̂(n) : Wτ (Xn) → Wτ (Xn)

is an endomorphism on clone(τ). If we apply σ̂ on a subalgebra T , instead
of σ̂/T we will simply write σ̂. Consequently, we have:
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Theorem 4.1. For any hypersubstitution σ ∈ HypT (τ), the sequence σ̂ is
an endomorphism on the algebra T .

As a consequence of Theorem 4.1, the set Im(σ̂) := {σ̂[t] | t ∈ Wτ (X)} is
the universe of a subalgebra of T .

Since it is not clear that every subalgebra T has an independent gen-
erating set, we assume in addition that the algebra T has an independent
generating set G := (G(n))n>0. That is, T is free with respect to itself,
freely generated by the set G. Then any substitution η := (η(n))n>0 from
G into T with η(n) : G(n) → T (n) for all n > 0 can be uniquely extended
to an endomorphism η := (η(n) : T (n) → T (n))n>0 of T . Such mappings are
called T -substitutions with respect to G. Let SubstG(T ) be the set of all such
T -substitutions with respect to G. Together with a binary composition ¯
defined by η1¯η2 := (η(n)

1 ¯η
(n)
2 )n>0 := (η1

(n)◦η(n)
2 )n>0, where ◦ is the usual

composition of functions, (SubstG(T );¯) is a semigroup. In fact, together
with the identity mapping idG it is a monoid. Let End(T ) be the monoid of
all endomorphisms of the algebra T . In the next theorems, we describe the
connection between the monoids SubstG(T ), End(T ) and HypT (τ)∪{σid}.

Theorem 4.2. Let T be a subalgebra of Menger(τ) and G be an indepen-
dent generating system of T . Then the monoids SubstG(T ) and End(T ) are
isomorphic.

Proof. We define a heterogeneous mapping ψ : SubstG(T ) → End(T ) by
ψ(η) = η for η ∈ SubstG(T ). Clearly, ψ is well-defined since η is uniquely
determined by η. For any η1, η2 ∈ SubstG(T ), we have

ψ(η1 ¯ η2) = η1 ¯ η2 = η1 ◦ η2 = η1 ◦ η2 = ψ(η1) ◦ ψ(η2),

since (η1 ◦ η2)|G = η1 ◦ η2|G and using the uniqueness of η1 ◦ η2. Therefore,
ψ is a homomorphism. For injectivity, let η1, η2 ∈ SubstG(T ) such that
ψ(η1) = ψ(η2). Then η1 = η2 and so η1|G = η2|G. This means η1 = η2.
Thus, ψ is injective. Clearly, ψ is surjective since for any endomorphism η
on T we have η|G is a T -substitution. This proves the theorem.
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By Theorem 4.1, we may consider the set {σ̂/T | σ ∈ HypT (τ)} ∪ {σ̂id/T }.
Clearly, this set forms a submonoid of the monoid (End(T ); ◦h, idT ) of all
endomorphisms of T .

5. T -hyperidentities and identities in T

We recall that for a subalgebra T = ((T (n))n>0; (Sn
m)m,n>0) of the heteroge-

nous algebra Menger(τ) = ((Wτ (Xn))n>0; (Sn
m)m,n>0) and for any variety

V of type τ , by Theorem 2.2, the set of all T -identities of V , IdT V , is a
congruence on the algebra T . This allows us to define cloneT (V ) = T /IdT V .

Now we will use the following ”translation mechanism” between ele-
ments of T and elements of a subalgebra of the absolutely free algebra
Fτ (X). The components of the sequence from the generating system G form
a set G of terms of type τ and the elements of T produced by application of
the operation Sni

m from G correspond to elements of Wτ (X) which arise by
application of the operations f i to elements from G. This gives a one-to-one
mapping ϕ (see [18]) between terms of type τ and so-called operator terms
formulated in the language of the heterogeneous algebra Menger(τ).

To consider identities in cloneτ (V ), we need to build up the free hetero-
geneous algebra in a variety defined by (C1) generated by the new variable
system G∗ which has the same cardinality as the system G. This free het-
erogeneous algebra is denoted by Fτ∗(G∗). This gives a one-to-one mapping
ϕ from the system G onto the system G∗. The extension of this mapping
assigns to arbitrary elements from T the corresponding terms over the het-
erogeneous algebra T .

Theorem 5.1. Let T be a subalgebra of the algebra Menger(τ) which has
an independent generating system G, let V be a variety of type τ and let
s ≈ t ∈ IdT V . If ϕ(s) ≈ ϕ(t) is an identity in cloneT (V ), then it is
a T -hyperidentity in V . (That is σ̂[s] ≈ σ̂[t] is an identity in V for all
σ ∈ HypT (τ).)

Proof. Let ϕ(s) ≈ ϕ(t) be an identity in cloneT (V ). Then for every valu-
ation ν we have ν(ϕ(s)) = ν(ϕ(t)). The composition

nat IdT V ◦ σ̂ ◦ ϕ−1

is the extension of a valuation mapping into cloneτ (V ), and so we have
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ϕ(s) ≈ ϕ(t) ∈ Id(cloneT (V )) ⇒ (natIdT V ◦ σ̂ ◦ ϕ−1)ϕ(s)

= (natIdT V ◦ σ̂ ◦ ϕ−1)ϕ(t)

⇒ natIdT V ◦ σ̂(s) = natIdT V ◦ σ̂(t)

⇒ [
σ̂(n)[s]

]
IdT

n V
=

[
σ̂(n)[t]

]
IdT

n V
for every n>0

⇒ σ̂[s] ≈ σ̂[t] ∈ IdT V

for every σ ∈ HypT (τ). Therefore s ≈ t is satisfied as a T -hyperidentity
in V.

Definition 5.2. Let T be a nonempty subset of the universe of the algebra
Menger(τ). We call T a j-ideal of Menger(τ) if there is an integer j with
1 ≤ j ≤ n + 1 and for any terms t1, t2, . . . , tn+1, such that tj ∈ T , imply
Sn

m(t1, . . . , tj , . . . , tn+1) ∈ T. A set T is called an ideal if it is a j-ideal for all
1 ≤ j ≤ n + 1 and for all n.

It is clear that every j-ideal is a subalgebra of Menger(τ).

Let τ = (1) and f be a unary operation symbol. We consider the
algebra (W(1)(X1);S1

1). It is easy to see that the set Nk := {t ∈ W(1)(X1) |
op(t) ≥ k} is an ideal of the algebra (W(1)(X1);S1

1). (op(t) is the number of
occurrences of the operation symbol f in the term t.)

Theorem 5.3. Let T be an ideal of the algebra Menger(τ) which has an
independent generating system G. Then T ×T ∪∆Wτ (X) is a fully invariant
congruence on the absolutely free algebra Fτ (X).

Proof. It is clear that T × T ∪ ∆Wτ (X) := ρ is an equivalence relation
on Wτ (X). To prove the compatibility, we let (s1, t1), . . . , (sni , tni) ∈ ρ. If
there exists si ∈ T for some 1 ≤ i ≤ ni, then ti is also in T and we obtain
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f(s1, . . . , sni) = Sni
n (f(x1, . . . , xni), s1, . . . , sni) ∈ T and similarly, we also

have f(t1, . . . , tni) = Sni
n (f(x1, . . . , xni), t1, . . . , tni) ∈ T, since T is an ideal

of Menger(τ). If si /∈ T for all 1 ≤ i ≤ ni, then si = ti for all i, and there-
fore f(s1, . . . , sni) = f(t1, . . . , tni). Hence (f(s1, . . . , sni), f(t1, . . . , tni)) ∈ ρ.

Next we will show that ρ is closed under any endomorphism on Fτ (X).
Let (s, t) ∈ ρ and let ϕ be any endomorphism on Fτ (X). If s = t, then
clearly ϕ(s) = ϕ(t), and so (ϕ(s), ϕ(t)) ∈ ρ. In the case s, t ∈ T it is easy to
see that ϕ(s) = Sn

m(s, s1, s2, . . . , sn) and ϕ(t) = Sn
m(t, s1, s2, . . . , sn), where

si = ϕ(xi) for all 1 ≤ i ≤ n and xi are variables occurring in terms s
and t. Since T is an ideal and s, t ∈ T , we have Sn

m(s, s1, s2, . . . , sn) and
Sn

m(t, s1, s2, . . . , sn) belongs to T . Thus (ϕ(s), ϕ(t)) ∈ ρ.

Let V be a variety V of type τ . If IdV ∩ T 2 is closed under all endomor-
phisms of Menger(τ), then, by Theorem 4.1, it is closed under σ̂ for any T -
hypersubstitution σ, and therefore the variety T (V ) = Mod(IdV ∩ T 2) is
T -solid. Then we have

Proposition 5.4. Let V be a variety of type τ . If IdT V is a fully invariant
congruence on Menger(τ), then the variety T (V ) is T -solid.
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