T-VARIETIES AND CLONES OF T-TERMS

KLAUS DENECKE
University of Potsdam, Institute of Mathematics
Am Neuen Palais, 14415 Potsdam, Germany
e-mail: kdenecke@rz.uni-potsdam.de

AND

PRAKIT JAMPACHON*
KhonKaen University, Department of Mathematics
KhonKaen, 40002 Thailand
e-mail: prajam@.kku.ac.th

Abstract

The aim of this paper is to describe how varieties of algebras of type τ can be classified by using the form of the terms which build the (defining) identities of the variety. There are several possibilities to do so. In [3], [19], [15] normal identities were considered, i.e. identities which have the form $x \approx x$ or $s \approx t$, where s and t contain at least one operation symbol. This was generalized in [14] to k-normal identities and in [4] to P-compatible identities. More generally, we select a subset T of $W_\tau(X)$, the set of all terms of type τ, and consider identities from $T \times T$. Since any variety can be described by one heterogenous algebra, its clone, we are also interested in the corresponding clone-like structure. Identities of the clone of a variety V correspond to M-hyperidentities for certain monoids M of hypersubstitutions. Therefore we will also investigate these monoids and the corresponding M-hyperidentities.

Keywords: T-quasi constant algebra, T-identity, j-ideal, T-hyperidentity, clone of T-terms.

2000 Mathematics Subject Classification: 08A40, 08A62, 08B05.

*Research of the second author supported by the Royal Thai Government, Thailand.
1. Introduction

Let \(\tau = (n_i)_{i \in I} \) be a type of algebras, indexed by a set \(I \), with operation symbols \(f_i \) of arity \(n_i \). Let \(X = \{ x_1, x_2, x_3, \ldots \} \) be a countably infinite set of variables, and for each \(n \geq 1 \) let \(X_n = \{ x_1, x_2, \ldots, x_n \} \). We denote by \(W_\tau(X) \) and \(W_\tau(X_n) \) the sets of all terms, and of all \(n \)-ary terms of type \(\tau \), respectively. These two sets are the universes of two absolutely free algebras,

\[
F_\tau(X) := \left(W_\tau(X); (f_i)_{i \in I} \right)
\]

and

\[
F_\tau(X_n) := \left(W_\tau(X_n); (f_i)_{i \in I} \right),
\]

respectively. The operations \(f_i \) are defined by setting \(f_i(t_1, \ldots, t_{n_i}) := f_i(t_1, \ldots, t_{n_i}) \) for any variable \(x_j \in X_{n_i} \), and

\[
S_n^m := f_r(S_n^m(s_1, t_1, \ldots, t_n), \ldots, S_n^m(s_{n_r}, t_1, \ldots, t_n)).
\]
Using these operations, we form the heterogeneous or multi-based algebra

\[
\text{clone}(\tau) := ((W_\tau(X_n))_{n>0}; (S^m_m)_{n,m>0}, (x_i)_{i \leq n,n>0}).
\]

It is well-known and easy to check that this algebra satisfies the clone axioms

(C1) \(S^p_m(\tilde{Z}, S^n_m(\tilde{Y}_1, \tilde{X}_1, \ldots, \tilde{X}_n), \ldots, S^n_m(\tilde{Y}_p, \tilde{X}_1, \ldots, \tilde{X}_n)) \approx S^n_m(S^n_m(\tilde{Z}, \tilde{Y}_1, \ldots, \tilde{Y}_p), \tilde{X}_1, \ldots, \tilde{X}_n), \text{ for } m, n, p = 1, 2, 3, \ldots,\)

(C2) \(S^m_m(\lambda_1, \tilde{X}_1, \ldots, \tilde{X}_n) \approx \tilde{X}_j, \text{ for } 1 \leq j \leq n \text{ and } m = 1, 2, 3, \ldots,\)

(C3) \(S^m_m(\tilde{X}_j, \lambda_1, \ldots, \lambda_m) \approx \tilde{X}_j, \text{ for } 1 \leq j \leq m \text{ and } m = 1, 2, 3, \ldots,\)

where \(S^p_m\) and \(S^n_m\) are operation symbols corresponding to the operations \(S^p_m\) and \(S^n_m\) of \(\text{clone}(\tau)\), where \(\lambda_1, \ldots, \lambda_m\) are nullary operation symbols and where \(\tilde{Z}, \tilde{Y}_1, \ldots, \tilde{Y}_p, \tilde{X}_1, \ldots, \tilde{X}_m\) are variables. The algebra \(\text{clone}(\tau)\) is also called the clone of terms of type \(\tau\).

Since later on we have to consider subalgebras and congruences of heterogeneous algebras, we recall these concepts. A subalgebra of \(\text{clone}(\tau)\) consists of a sequence \((T^{(n)})_{n>0}\), where \(T^{(n)} \subseteq W_\tau(X_n)\) for all \(n > 0\) which is closed under all operations of \(\text{clone}(\tau)\). A congruence on \(\text{clone}(\tau)\) is a sequence \((\theta_n)_{n>0}\) of binary relations, where \(\theta_n \subseteq W_\tau(X_n) \times W_\tau(X_n)\), which is preserved by all operations from \(\text{clone}(\tau)\). For more background on heterogeneous algebras see \([16], [1]\).

Since the set \(W_\tau(X_n)\) of all \(n\)-ary terms of type \(\tau\) is closed under the superposition operation \(S^n := S^n_m\), there is a homogeneous analogue of this structure. The algebra \((W_\tau(X_n); S^n, x_1, \ldots, x_n)\) is an algebra of type \((n + 1, 0, \ldots, 0)\), which still satisfies the clone axioms above for the case that \(p = m = n\). Such an algebra is called a \textit{unitary Menger algebra of rank} \(n\) (see \([22]\)).
Let n-clone $(\tau) := (W_\tau(X_n); S^n)$ be the reduct of the unitary Menger algebra $(W_\tau(X_n); S^n, x_1, \ldots, x_n)$ of rank n. The algebra n-clone (τ) is called a Menger algebra of rank n.

If we consider the sequence $(W_\tau(X_n))_{n>0}$ together with the sequence of operations $(S^n_{m})_{m,n>0}$, we obtain a heterogeneous algebra $((W_\tau(X_n))_{n>0}; (S^n_{m})_{m,n>0})$ which we denote by $\text{Menger}(\tau)$. This heterogeneous algebra is called a Menger system (see [22]).

2. T- Identities

In [9] the authors studied the algebra $(W_{\tau/n}(X_n); S^n)$, the algebra of n-full terms of type τ and in [6], [14] the algebras of strongly full terms and of k-normal n-ary terms are studied. All of them are subalgebras of $(W_\tau(X_n); S^n)$. Now we generalize these results to an arbitrary subalgebra $T = (T; (S^n_{m})_{m,n>0})$ with $T := (T(n))_{n>0}$ and $T := \cup_{n>0} T(n)$ of the heterogeneous algebra $\text{Menger}(\tau)$. For any variety V of type τ, we define $Id^n_T V := \{ s \approx t \in IdV \mid s, t \in T(n) \}$, that is $Id^n_T V := IdV \cap T(n) \times T(n)$ for every $n > 0$, where IdV is the set of all identities of V, and then $Id^T V := (Id^n_T V)_{n>0}$ is called the sequence of all T-identities of V. Then $Id^T V = \cup_{n>0} Id^n_T V$. We will also use the notation $Id^n_V := (Id^n_V)_{n>0}$, where IdV is the union of the sets $Id^n V$. i.e. $IdV = \cup_{n>0} Id^n_V$.

Now we recall the following well-known facts:

Lemma 2.1. For any variety V of type τ, IdV is a congruence on the algebra $\text{Menger}(\tau)$.

Proof. This follows from the fact that IdV is a fully invariant congruence on the absolutely free algebra $F_\tau(X)$. ■

Now we consider subalgebras T of the algebra $\text{Menger}(\tau)$ and will prove that the set of all T-identities of a variety V is a congruence on T. We can use that $Id^n_T V = (Id^n_V)_{n>0}$ is a congruence on $\text{Menger}(\tau)$ and the well-known fact that for a congruence θ on an algebra B, and for a subalgebra $A \subseteq B$, the relation $\theta_A := \theta \cap (A \times A)$ is a congruence on A. Then we have

Theorem 2.2. For a subalgebra $T = ((T(n))_{n>0}; (S^n_{m})_{m,n>0})$ of the heterogeneous algebra $\text{Menger}(\tau)$ and for a variety V of type τ, the sequence $Id^T V$ is a congruence on T. ■
Because of the previous theorem, we can define the quotient algebra $T/Id^T V$ which we denote by $\text{clone}_T(V)$.

If A is an algebra of type τ and if $s \approx t$ is an equation consisting of terms of type τ, then $A \models s \approx t$ means that $s \approx t$ is satisfied as an identity in A. Let T be a subset of $W_\tau(X)$ and let R_T be the relation between $\text{Alg}(\tau)$, the set of all algebras of type τ, and T^2, which is defined by

$$R_T := \{(A, s \approx t) \mid A \in \text{Alg}(\tau), s, t \in T \ (A \models s \approx t)\}.$$

This relation induces a Galois connection $(\text{Mod}^T, \text{Id}^T)$ between $\text{Alg}(\tau)$ and T^2 where the operations Mod^T and Id^T are defined as follows: For $K \subseteq \text{Alg}(\tau)$ and for $\Sigma \subseteq T^2$,

$$\text{Id}^T(K) = \{ s \approx t \in T^2 \mid \forall A \in K (A \models s \approx t)\} \quad \text{and} \quad \text{Mod}^T(\Sigma) = \{ A \in \text{Alg}(\tau) \mid \forall s \approx t \in \Sigma (A \models s \approx t)\}.$$

Clearly, the operator Mod^T is the restriction of the usual operator Mod to T^2. From the properties of a Galois connection we obtain that the products $\text{Mod}^T \text{Id}^T$ and $\text{Id}^T \text{Mod}^T$ are closure operators on the power set of $\text{Alg}(\tau)$ and of T^2, respectively.

Now we consider the variety $T(V) := \text{Mod}^T \text{Id}^T V$ for a given variety V and $\text{Id}^T V := \text{Id} V \cap T^2$. It is clear that if $\text{Id} V \subseteq T^2$, then $T(V) = V$. Since T^2 must not be an equational theory in general, the converse is not true.

Proposition 2.3. Let T be a subset of $W_\tau(X)$ and let $\mathcal{L}(\tau)$ be the lattice of all varieties of type τ. Then the operator $C_T : \mathcal{L}(\tau) \rightarrow \mathcal{L}(\tau)$ defined by $C_T(V) = T(V)$ is a closure operator.

Proof. From $\text{Id}^T V \subseteq \text{Id} V$ there follows $V = \text{Mod} \text{Id} V \subseteq \text{Mod}^T \text{Id}^T V = T(V) = C_T(V)$. Using the fact that $\text{Mod}^T \text{Id}^T$ is a closure operator, we obtain $C_T(C_T(V)) = T(T(V)) = \text{Mod}^T \text{Id}^T(\text{Mod}^T \text{Id}^T V) = \text{Mod}^T \text{Id}^T V = T(V) = C_T(V)$. Finally, from $V_1 \subseteq V_2$, we have $C_T(V_1) = T(V_1) = \text{Mod}^T \text{Id}^T V_1 = \text{Mod}^T (\text{Id} V_1 \cap T^2) \subseteq \text{Mod}^T (\text{Id} V_2 \cap T^2) = T(V_2) = C_T(V_2)$. Altogether, we obtain that C_T is a closure operator. □
The set of all fixed points of C_T forms a sublattice of the lattice $\mathcal{L}(\tau)$, in fact it is a complete lattice (see [12]). Now we are interested in the variety $\text{Mod}(T \times T)$.

Definition 2.4. Let T be a subset of $W_\tau(X)$. An algebra A of type τ is called T-quasi constant algebra if there exists a term $t_0 \in T$ such that $t^A = t^A_0$ for all $t \in T$.

Let TQ be the class of all T-quasi constant algebras of type τ. This definition generalizes the concept of a constant algebra introduced in [3], and that of a quasi-constant algebra introduced in [9].

Proposition 2.5. Let T be a subset of $W_\tau(X)$. Then $\text{Mod}(T \times T) = TQ$.

Proof. Let $A \in TQ$. Then there exists a term $t_0 \in T$ such that $t^A = t^A_0$ for all $t \in T$. Let t_1, t_2 be arbitrary terms in T. Then $t^A_1 = t^A_0 = t^A_2$. This means $A \models t_1 \approx t_2$ and hence $A \in \text{Mod}(T \times T)$. Conversely, let $A \in \text{Mod}(T \times T)$. Then $t^A_1 = t^A_2$ for all $t_1, t_2 \in T$. Therefore, $A \in TQ$.

Corollary 2.6. For any variety V, we have $T(V) = V \lor TQ$.

Proof. $T(V) = \text{Mod}^T \text{Id}^T V = \text{Mod}(\text{Id}V \cap T \times T) = \text{Mod} \text{Id}V \lor \text{Mod}(T \times T)$

$= V \lor TQ$.

We notice that a similar approach is contained in [13].

3. **T-HYPERSUBSTITUTIONS AND T-HYPERIDENTITIES**

To study the identities in the algebra $T = (\langle T^{(n)} \rangle_{n>0}; \langle S^n_m \rangle_{m,n>0})$, we need the concepts of T-hypersubstitutions and T-hyperidentities.

A hypersubstitution σ of type τ is a mapping which assigns to each operation symbol f_i of type τ an n_i-ary term $\sigma(f_i)$ of type τ. Any hypersubstitution σ induces a mapping $\tilde{\sigma}$ on the set $W_\tau(X)$ of all terms of type τ, given by the following inductive definition:

(i) $\tilde{\sigma}[x_j] := x_j$, if $x_j \in X$ is a variable,
(ii) \(\hat{\sigma}[f_i(t_1, \ldots, t_{n_i})] := S^n_{n_i}(\sigma(f_i), \hat{\sigma}[t_1], \ldots, \hat{\sigma}[t_{n_i}]) \),

for compound terms \(f_i(t_1, \ldots, t_{n_i}) \).

Let \(Hyp(\tau) \) be the set of all hypersubstitutions of type \(\tau \). A binary operation \(\circ_h \) can be defined on this set, by

\[
\sigma_1 \circ_h \sigma_2 = \hat{\sigma}_1 \circ \sigma_2,
\]

where \(\circ \) is the usual composition of mappings. It is well-known that \((Hyp(\tau); \circ_h, \sigma_{id})\) is a monoid, where \(\sigma_{id} \) is the identity hypersubstitution which is defined by \(\sigma_{id}(f_i) = f_i(x_1, \ldots, x_{n_i}) \) for all \(i \in I \).

Let \(T = ((T^{(n)})_{n>0}; (S^n_{m})_{m,n>0}) \) be a subalgebra of the algebra \(Menger(\tau) \). We define \(Hyp^T(\tau) \), the set of all \(T \)-hypersubstitutions as follows;

\[
Hyp^T(\tau) = \{ \sigma \in Hyp(\tau) \mid \forall i \in I \, \sigma(f_i) \in T \text{ and } \forall t \in T \, \hat{\sigma}[t] \in T \}.
\]

Then we get:

Proposition 3.1. Let \(T \) be a subalgebra of the algebra \(Menger(\tau) \). Then \((Hyp^T(\tau); \circ_h) \) is a subsemigroup of the semigroup \((Hyp(\tau); \circ_h) \). Moreover, \((Hyp^T(\tau) \cup \{\sigma_{id}\}; \circ_h, \sigma_{id}) \) is a submonoid of \((Hyp(\tau); \circ_h, \sigma_{id}) \). \(\blacksquare \)

Definition 3.2. Let \(T \) be a subalgebra of \(Menger(\tau) \) and let \(V \) be a variety of type \(\tau \) and \(Id^T_V \) be the set of all identities of \(V \) consisting of terms from \(T \), i.e., \(Id^T_V = Id_V \cap T^2 \). Then \(s \approx t \in Id^T_V \) is called a \(T \)-hyperidentity in \(V \) if \(\hat{\sigma}[s] \approx \hat{\sigma}[t] \in Id^T_V \) for all \(\sigma \in Hyp^T(\tau) \). If every identity in \(Id^T_V \) is satisfied as a \(T \)-hyperidentity, then the variety \(V \) is called \(Hyp^T(\tau) \)-solid; for short, we will write \(T \)-solid.

4. \(T \)-HYPERSUBSTITUTIONS AND ENDOmorphisms of \(T \)

There is a close connection between extensions of \(T \)-hypersubstitutions and endomorphisms of \(T \). This connection will be used later on to describe identities in the quotient algebra \(T/Id^T_V \).

For a hypersubstitution \(\sigma \) in \(Hyp(\tau) \), it is well-known that the induced mapping \(\hat{\sigma} \), regarded as a sequence \(\hat{\sigma} := (\hat{\sigma}^{(n)})_{n>0} \) with

\[
\hat{\sigma}^{(n)} : W_\tau(X_n) \to W_\tau(X_n)
\]

is an endomorphism on \(clone(\tau) \). If we apply \(\hat{\sigma} \) on a subalgebra \(T \), instead of \(\hat{\sigma}/T \) we will simply write \(\hat{\sigma} \). Consequently, we have:
Theorem 4.1. For any hypersubstitution $\sigma \in \text{Hyp}_T^\tau$, the sequence $\hat{\sigma}$ is an endomorphism on the algebra T.

As a consequence of Theorem 4.1, the set $\text{Im}(\hat{\sigma}) := \{\hat{\sigma}[t] \mid t \in W_+(X)\}$ is the universe of a subalgebra of T.

Since it is not clear that every subalgebra T has an independent generating set, we assume in addition that the algebra T has an independent generating set $G := (G(n))_{n>0}$. That is, T is free with respect to itself, freely generated by the set G. Then any substitution $\eta := (\eta(n))_{n>0}$ from G into T with $\eta(n) : G(n) \to T^{(n)}$ for all $n > 0$ can be uniquely extended to an endomorphism $\overline{\eta} := (\overline{\eta}(n) : T^{(n)} \to T^{(n)})_{n>0}$ of T. Such mappings are called T-substitutions with respect to G. Let $\text{Subst}_G(T)$ be the set of all such T-substitutions with respect to G. Together with a binary composition \circ defined by $\eta_1 \circ \eta_2 := (\eta_1(n) \circ \eta_2(n))_{n>0} := (\overline{\eta_1}(n) \circ \overline{\eta_2}(n))_{n>0}$, where \circ is the usual composition of functions, $(\text{Subst}_G(T); \circ)$ is a semigroup. In fact, together with the identity mapping id_T it is a monoid. Let $\text{End}(T)$ be the monoid of all endomorphisms of the algebra T. In the next theorems, we describe the connection between the monoids $\text{Subst}_G(T)$, $\text{End}(T)$ and $\text{Hyp}_T^\tau \cup \{\sigma_{id}\}$.

Theorem 4.2. Let T be a subalgebra of $\text{Menger}(\tau)$ and G be an independent generating system of T. Then the monoids $\text{Subst}_G(T)$ and $\text{End}(T)$ are isomorphic.

Proof. We define a heterogeneous mapping $\psi : \text{Subst}_G(T) \to \text{End}(T)$ by $\psi(\eta) = \overline{\eta}$ for $\eta \in \text{Subst}_G(T)$. Clearly, ψ is well-defined since $\overline{\eta}$ is uniquely determined by η. For any $\eta_1, \eta_2 \in \text{Subst}_G(T)$, we have

$$
\psi(\eta_1 \circ \eta_2) = \overline{\eta_1 \circ \eta_2} = \overline{\eta_1} \circ \overline{\eta_2} = \overline{\eta_1} \circ \eta_2 = \psi(\eta_1) \circ \psi(\eta_2),
$$

since $(\overline{\eta_1} \circ \overline{\eta_2})|_G = \overline{\eta_1 \circ \eta_2}|_G$ and using the uniqueness of $\overline{\eta_1} \circ \eta_2$. Therefore, ψ is a homomorphism. For injectivity, let $\eta_1, \eta_2 \in \text{Subst}_G(T)$ such that $\overline{\psi(\eta_1)} = \psi(\eta_2)$. Then $\overline{\eta_1} = \overline{\eta_2}$ and so $\overline{\eta_1} = \overline{\eta_2}$. This means $\eta_1 = \eta_2$. Thus, ψ is injective. Clearly, ψ is surjective since for any endomorphism η on T we have $\eta|_G$ is a T-substitution. This proves the theorem.
By Theorem 4.1, we may consider the set \(\{ \hat{\sigma}/T \mid \sigma \in Hyp^T(\tau) \} \cup \{ \hat{id}/T \} \). Clearly, this set forms a submonoid of the monoid \((End(T); \circ_n, id_T) \) of all endomorphisms of \(T \).

5. \(T \)-hyperidentities and identities in \(T \)

We recall that for a subalgebra \(T = (\{(T^n)_{n>0}; (S^n_{m,n})_{m,n>0}\}) \) of the heterogeneous algebra \(Menger(\tau) = ((W_{\tau}(X^n))_{n>0}; (S^n_{m,n})_{m,n>0}) \) and for any variety \(V \) of type \(\tau \), by Theorem 2.2, the set of all \(T \)-identities of \(V \), \(Id^T_V \), is a congruence on the algebra \(T \). This allows us to define \(\text{clone}_T(V) = T/Id^T_V \).

Now we will use the following "translation mechanism" between elements of \(T \) and elements of a subalgebra of the absolutely free algebra \(F_\tau(X) \). The components of the sequence from the generating system \(G \) form a set \(G \) of terms of type \(\tau \) and the elements of \(T \) produced by application of the operation \(S^n_{m} \) from \(G \) correspond to elements of \(W_{\tau}(X) \) which arise by application of the operations \(f_i \) to elements from \(G \). This gives a one-to-one mapping \(\varphi \) (see [18]) between terms of type \(\tau \) and so-called operator terms formulated in the language of the heterogeneous algebra \(Menger(\tau) \).

To consider identities in \(\text{clone}_\tau(V) \), we need to build up the free heterogeneous algebra in a variety defined by \((C_1) \) generated by the new variable system \(G^* \) which has the same cardinality as the system \(G \). This free heterogeneous algebra is denoted by \(F_\tau(G^*) \). This gives a one-to-one mapping \(\varphi \) from the system \(G \) onto the system \(G^* \). The extension of this mapping assigns to arbitrary elements from \(T \) the corresponding terms over the heterogeneous algebra \(T \).

Theorem 5.1. Let \(T \) be a subalgebra of the algebra \(Menger(\tau) \) which has an independent generating system \(G \), let \(V \) be a variety of type \(\tau \) and let \(s \approx t \in Id^T_V \). If \(\varphi(s) \approx \varphi(t) \) is an identity in \(\text{clone}_T(V) \), then it is a \(T \)-hyperidentity in \(V \). (That is \(\hat{\sigma}[s] \approx \hat{\sigma}[t] \) is an identity in \(V \) for all \(\sigma \in Hyp^T(\tau) \).)

Proof. Let \(\varphi(s) \approx \varphi(t) \) be an identity in \(\text{clone}_T(V) \). Then for every valuation \(\nu \) we have \(\nu(\varphi(s)) = \nu(\varphi(t)) \). The composition

\[
\text{nat } Id^T_V \circ \hat{\sigma} \circ \varphi^{-1}
\]

is the extension of a valuation mapping into \(\text{clone}_\tau(V) \), and so we have
\[\varphi(s) \approx \varphi(t) \in Id(\text{clone}_T(V)) \Rightarrow (\text{natId}_V^T \circ \hat{\sigma} \circ \varphi^{-1})\varphi(s) \]

\[= (\text{natId}_V^T \circ \hat{\sigma} \circ \varphi^{-1})\varphi(t) \]

\[\Rightarrow \text{natId}_V^T \circ \hat{\sigma}(s) = \text{natId}_V^T \circ \hat{\sigma}(t) \]

\[\Rightarrow [\hat{\sigma}^{(n)}[s]]_{Id}^T V = [\hat{\sigma}^{(n)}[t]]_{Id}^T V \quad \text{for every } n > 0 \]

\[\Rightarrow \hat{\sigma}[s] \approx \hat{\sigma}[t] \in Id^T V \]

for every \(\sigma \in \text{Hyp}^T(\tau) \). Therefore \(s \approx t \) is satisfied as a \(T \)-hyperidentity in \(V \).

\textbf{Definition 5.2.} Let \(T \) be a nonempty subset of the universe of the algebra \(\text{Menger}(\tau) \). We call \(T \) a \(j \)-ideal of \(\text{Menger}(\tau) \) if there is an integer \(j \) with \(1 \leq j \leq n + 1 \) and for any terms \(t_1, t_2, \ldots, t_{n+1} \), such that \(t_j \in T \), imply \(S_{n}^n(t_1, \ldots, t_j, \ldots, t_{n+1}) \in T \). A set \(T \) is called an ideal if it is a \(j \)-ideal for all \(1 \leq j \leq n + 1 \) and for all \(n \).

It is clear that every \(j \)-ideal is a subalgebra of \(\text{Menger}(\tau) \).

Let \(\tau = (1) \) and \(f \) be a unary operation symbol. We consider the algebra \((W_{(1)}(X_1); S_{f}^1) \). It is easy to see that the set \(N^k := \{ t \in W_{(1)}(X_1) \mid \text{op}(t) \geq k \} \) is an ideal of the algebra \((W_{(1)}(X_1); S_{f}^1) \). \(\text{op}(t) \) is the number of occurrences of the operation symbol \(f \) in the term \(t \).

\textbf{Theorem 5.3.} Let \(T \) be an ideal of the algebra \(\text{Menger}(\tau) \) which has an independent generating system \(G \). Then \(T \times T \cup \Delta_{W_{\tau}(X)} \) is a fully invariant congruence on the absolutely free algebra \(F_{\tau}(X) \).

\textbf{Proof.} It is clear that \(T \times T \cup \Delta_{W_{\tau}(X)} := \rho \) is an equivalence relation on \(W_{\tau}(X) \). To prove the compatibility, we let \((s_1, t_1), \ldots, (s_n, t_n) \in \rho \). If there exists \(s_i \in T \) for some \(1 \leq i \leq n_i \), then \(t_i \) is also in \(T \) and we obtain
\(\mathcal{F}(s_1, \ldots, s_n) = S^n_m(f(x_1, \ldots, x_m), s_1, \ldots, s_n) \in T \) and similarly, we also have
\(\mathcal{F}(t_1, \ldots, t_n) = S^n_m(f(x_1, \ldots, x_m), t_1, \ldots, t_n) \in T \), since \(T \) is an ideal of \(\text{Menger}(\tau) \). If \(s_i \notin T \) for all \(1 \leq i \leq n_i \), then \(s_i = t_i \) for all \(i \), and therefore
\(\mathcal{F}(s_1, \ldots, s_n) = \mathcal{F}(t_1, \ldots, t_n) \). Hence \((\mathcal{F}(s_1, \ldots, s_n), \mathcal{F}(t_1, \ldots, t_n)) \in \rho \).

Next we will show that \(\rho \) is closed under any endomorphism on \(\mathcal{F}_\tau(X) \). Let \((s, t) \in \rho \) and let \(\varphi \) be any endomorphism on \(\mathcal{F}_\tau(X) \). If \(s = t \), then clearly \(\varphi(s) = \varphi(t) \), and so \((\varphi(s), \varphi(t)) \in \rho \). In the case \(s, t \in T \) it is easy to see that \(\varphi(s) = S^n_m(s, s_1, s_2, \ldots, s_n) \) and \(\varphi(t) = S^n_m(t, s_1, s_2, \ldots, s_n) \), where \(s_i = \varphi(x_i) \) for all \(1 \leq i \leq n \) and \(x_i \) are variables occurring in terms \(s \) and \(t \). Since \(T \) is an ideal and \(s, t \in T \), we have \(S^n_m(s, s_1, s_2, \ldots, s_n) \) and \(S^n_m(t, s_1, s_2, \ldots, s_n) \) belong to \(T \). Thus \((\varphi(s), \varphi(t)) \in \rho \). ■

Let \(V \) be a variety \(V \) of type \(\tau \). If \(\text{Id} V \cap T^2 \) is closed under all endomorphisms of \(\text{Menger}(\tau) \), then, by Theorem 4.1, it is closed under \(\hat{\sigma} \) for any \(T \)-hypersubstitution \(\sigma \), and therefore the variety \(T(V) = \text{Mod}(\text{Id} V \cap T^2) \) is \(T \)-solid. Then we have

Proposition 5.4. Let \(V \) be a variety of type \(\tau \). If \(\text{Id}^T V \) is a fully invariant congruence on \(\text{Menger}(\tau) \), then the variety \(T(V) \) is \(T \)-solid.

References

Received 2 May 2005
Revised 20 June 2005