ArticleOriginal scientific text

Title

On the structure and zero divisors of the Cayley-Dickson sedenion algebra

Authors 1

Affiliations

  1. SciTech R and D Center, OVPRD, Polytechnic University of the Philippines, Manila

Abstract

The algebras ℂ (complex numbers), ℍ (quaternions), and (octonions) are real division algebras obtained from the real numbers ℝ by a doubling procedure called the Cayley-Dickson Process. By doubling ℝ (dim 1), we obtain ℂ (dim 2), then ℂ produces ℍ (dim 4), and ℍ yields (dim 8). The next doubling process applied to then yields an algebra (dim 16) called the sedenions. This study deals with the subalgebra structure of the sedenion algebra and its zero divisors. In particular, it shows that has subalgebras isomorphic to ℝ, ℂ, ℍ, , and a newly identified algebra ̃ called the quasi-octonions that contains the zero-divisors of .

Keywords

sedenions, subalgebras, zero divisors, octonions, quasi-octonions, quaternions, Cayley-Dickson process, Fenyves identities

Bibliography

  1. J. Baez, The octonions, Bull. Amer. Math. Soc. 39 (2) (2001), 145-205.
  2. R.E. Cawagas, FINITAS - A software for the construction and analysis of finite algebraic structures, PUP Jour. Res. Expo., 1 No. 1, 1st Semester 1997.
  3. R.E. Cawagas, Loops embedded in generalized Cayley algebras of dimension 2 r, r ł 2, Int. J. Math. Math. Sci. 28 (2001). doi: 181-187
  4. J.H. Conway and D.A. Smith, On Quaternions and Octonions: Their Geometry and Symmetry, A.K. Peters Ltd., Natik, MA, 2003.
  5. K. Imaeda and M. Imaeda, Sedenions: algebra and analysis, Appl. Math. Comput. 115 (2000), 77-88.
  6. R.P.C. de Marrais, The 42 assessors and the box-kites they fly: diagonal axis-pair systems of zero-divisors in the sedenions'16 dimensions, http://arXiv.org/abs/math.GM/0011260 (preprint 2000).
  7. G. Moreno, The zero divisors of the Cayley-Dickson algebras over the real numbers, Bol. Soc. Mat. Mexicana (3) 4 (1998), 13-28.
  8. S. Okubo, Introduction to Octonions and Other Non-Associative Algebras in Physics, Cambridge University Press, Cambridge 1995.
  9. J.D. Phillips and P. Vojtechovsky, The varieties of loops of the Bol-Moufang type, submitted to Algebra Universalis.
  10. R.D. Schafer, An Introduction to Nonassociative Algebras, Academic Press, New York 1966.
  11. J.D.H. Smith, A left loop on the 15-sphere, J. Algebra 176 (1995), 128-138.
  12. J.D.H, Smith, New developments with octonions and sedenions, Iowa State University Combinatorics/Algebra Seminar. (January 26, 2004), http://www.math.iastate.edu/jdhsmith/math/JS26jan4.htm.
  13. T. Smith, Why not SEDENIONS?, http://www.innerx.net/personal/tsmith/sedenion.html.
  14. J.P. Ward, Quaternions and Cayley Numbers, Kluwer Academic Publishers, Dordrecht 1997.
Pages:
251-265
Main language of publication
English
Received
2004-05-19
Accepted
2004-07-25
Published
2004
Exact and natural sciences