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Abstract

Join-independent and meet-independent sets in complete
lattices were defined in [6]. According to [6], to each complete lattice
(L,≤) and a cardinal number p one can assign (in a unique way)
an incidence structure J p

L of independent sets of (L,≤). In this
paper some lattice-inadmissible incidence structures are founded, i.e.
such incidence structures that are not isomorphic to any incidence
structure J p

L .
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Let (L,≤) be a complete lattice and let
∨

,
∧

be the supremum and the
infimum of any subset of L, respectively. The least and the greatest elements
in (L,≤) are denoted by 0, 1 respectively. If x, y ∈ L, then x‖y means that
x, y are incomparable in (L,≤). If X ⊆ L, then we put Xx := X r {x} for
x ∈ X and

J(X) =
{∨

Xx | x ∈ X
}

, M(X) =
{∧

Xx | x ∈ X
}

.
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Definition 1. A subset X ⊆ L is said to be join-independent (meet-
independent) if and only if x 6≤ ∨

Xx (
∧

Xx 6≤ x, resp.) for all x ∈ X.

Remark 1. The concept of independence have been studied in various types
of lattices motivated by applications in algebra and geometry (refer to [1]–
[3], [5], [12]). Our approach is explained in [6] in detail and it is used also
in [11].

Remark 2. A set X = {x} is join-independent (meet-independent) if and
only if x 6= 0 (x 6= 1). If card(X) = |X| ≥ 2, then X is join-independent
(meet-independent) if and only if x‖∨

Xx (x‖∧
Xx, resp.) for all x ∈ X.

To avoid trivial cases we will suppose that |X| > 2 in what follows. The
notions of join- and meet-independent sets are dual in complete lattices.
Each assertion about join-independent sets admits its corresponding dual
one which will not be stated explicitly.

The set of all join-independent (meet-independent) sets of cardinality p > 2
will be denoted by Gp (Mp, respectively).

The following proposition is obvious:

Proposition 1. Let x, y be distinct elements of a set X ∈ Gp. Then x‖y
and

∨
Xx‖

∨
Xy.

To every subset X ⊆ L we assign a system UX of subsets of L by setting
Y ∈ UX iff there exists a bijective mapping α : X → Y such that

∨
Xx ≤

α(x) and α(x)‖x for all x ∈ X. This mapping is called a U -mapping.
Dually, to a subset X ⊆ L we assign a system VX of subsets of L by

setting Z ∈ VX iff there exists a bijective mapping β : X → Z such that
β(x) ≤ ∧

Xx and β(x)‖x for all x ∈ X. This mapping is called a V -mapping.
It is easy to show: If α is a U -mapping, then α−1 is a V -mapping.
The proof of the following proposition is straightforward.

Proposition 2. Let X ⊆ L. Then the following statements are equivalent:

(1) X ∈ Gp,

(2) J(X) ∈ UX ,

(3) UX 6= ∅.
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Proposition 3. Let X ⊆ L where |X| = p. If Y ∈ UX , then Y ∈ Mp and
X ∈ VY .

Proof. Let Y ∈ UX . Then a U -mapping α : X → Y exists. Let us put
Yα(x) = Y r {α(x)} for all x ∈ X. If α(y) ∈ Yα(x), then y ∈ Xx and x ∈ Xy

which yields x ≤ ∨
Xy ≤ α(y). Hence, x ≤ ∧

Yα(x). If
∧

Yα(x) ≤ α(x), then
x ≤ α(x) which is a contradiction. Thus, Y ∈ Mp. Since α−1 : Y → X is a
V -mapping we get X ∈ VY .

Proposition 4. Let X ⊆ L. Then the following statements are equivalent:

(1) X ∈ Gp,

(2) J(X) ∈ Mp.

Proof. (1) ⇒ (2) : It follows from Proposition 2 and 3.
(2) ⇒ (1) : Let J(X) ∈ Mp. If we put Px = J(X) r

∨
Xx for x ∈ X,

then
∧

Px 6≤
∨

Xx and
∧

Px ≤
∨

Xy for each y ∈ Xx. Let us assume that
x ≤ ∨

Xx. Then
∨

Xx =
∨

X and
∨

Xy ≤
∨

Xx for all y ∈ Xx. Thus,∧
Px ≤

∨
Xx which is a contradiction. Hence, x 6≤ ∨

Xx and X ∈ Gp.

Proposition 5. Let X ∈ Gp and Y ⊆ L. Then

(1) Y ∈ UX

if and only if

(2) there exists a bijective mapping γ : J(X) → Y such that m ≤ γ(m)
for each m ∈ J(X) and γ(m)‖n for all n ∈ J(X) distinct from m.

Proof. Since X is a join-independent set the mapping β : x 7→ ∨
Xx,

x ∈ X, is a bijection of X onto J(X).
(1) ⇒ (2) : It follows from Y ∈ UX that there exists a U -mapping

α : X → Y . Let us put γ = αβ−1. If m ∈ J(X), then m =
∨

Xx for
a certain x ∈ X and γ(

∨
Xx) = α(x). Thus,

∨
Xx ≤ γ(

∨
Xx). Consider

n ∈ J(X) where n 6= m. Then n =
∨

Yy where y 6= x. If α(x) ≤ ∨
Xy, then∨

Xx ≤ α(x) ≤ ∨
Xy which contradicts Proposition 1. If

∨
Xy ≤ α(x), then

x ≤ ∨
Xy ≤ α(x), a contradiction again. Hence, α(x)‖∨

Xy and γ(m)‖n.
(2) ⇒ (1) : The mapping α = γβ is a bijection of X onto Y with

α(x) = γ(
∨

Xx) for x ∈ X. It suffices to show that α is a U -mapping.
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Proposition 6. If X ⊆ L and Y ∈ VX , then UX ∩ UY = ∅.

Proof. If |X| = p, then Y ∈ VX yields Y ∈ Gp and J(Y ) ∈ Mp.
By Proposition 3, X ∈ UY and there exists a mapping γ : J(Y ) → X given
in Proposition 5. Assume that A ∈ UX . According to Proposition 5, for
each a ∈ A there is a unique element

∨
Xx ∈ J(X) such that

∨
Xx ≤ a.

Then z ≤ a for all z ∈ Xx. It follows from p > 2 that Xx contains at
least two distinct elements z1, z2. If we put γ−1(z1) = m1, γ−1(z2) = m2,
then we obtain m1 ≤ z1 ≤ a, m2 ≤ z2 ≤ a. Thus, by Proposition 5,
A /∈ UY .

Proposition 7. Let X,Y ∈ Gp. Then J(X) = J(Y ) if and only if
UX = UY .

Proof.

1. Let J(X) = J(Y ) and consider C ∈ UX . Then, by Proposition 5, there
exists a mapping γ : J(X) → C. Since J(X) = J(Y ), we obtain C ∈ UY

and thus, UX ⊆ UY . It is also obvious that UY ⊆ UX .

2. Let UX = UY . Since J(X) ∈ UX and J(Y ) ∈ UY , we get J(X) ∈ UY

and J(Y ) ∈ UX . It follows from J(X) ∈ UY that there exists a bijection
γ : J(X) → J(Y ) established in Proposition 5 and for each

∨
Xx ∈ J(X)

there exists a unique element
∨

Yy such that
∨

Xx ≤
∨

Yy. If we put
ξ1(x) = y, we get a bijective mapping of X onto Y . Similarly, with the
help of J(X) ∈ UY we define a bijective mapping ξ2 : Y → X such that
ξ2(m) = n if and only if

∨
Ym ≤ ∨

Xn. For x ∈ X we get
∨

Xx ≤∨
Yξ1(x) ≤

∨
Xξ2ξ1(x) and, by Proposition 1, x = ξ2ξ1(x). Consider∨

Xx ∈ J(X). Then
∨

Xx ≤
∨

Yξ1(x) and, with respect to ξ1(x) ∈ Y ,
we obtain

∨
Yξ1(x) ≤

∨
Xξ2ξ1(x) =

∨
Xx. Thus,

∨
Xx =

∨
Yξ1(x) and∨

Xx ∈ J(Y ). Therefore, J(X) ⊆ J(Y ) and J(Y ) ⊆ J(X) can be
obtained similarly.

As in [6], to (L,≤) and p an incidence structure can be assigned. We recall
the definition and some basic facts (more thoroughly, see [4]) about incidence
structures needed in what follows.

Definition 2. An incidence structure (context) is a triple of sets J =
(G,M, I), where I ⊂ G × M . An incidence structure J1 = (G1,M1, I1)
is a substructure of J if G1 ⊆ G, M1 ⊆ M and I1 = I ∩ (G1 ×M1).
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Remark 3. Incidence structures are often given by their graphs: The el-
ements of sets G,M are represented by points and those corresponding to
elements g ∈ G, m ∈ M are joined by a line-segment iff gIm.

Definition 3. An incidence structure J = (G,M, I) having the following
incidence graph is called a simple connection

(a) of type 1:
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(c) of type 2:
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(d) of type 2’:
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The positive integer n is said to be a length of this connection.

Let J = (G,M, I) be an incidence structure. Then for every subset A ⊆ G,
respectively B ⊆ M, we put A↑ = {m ∈ M | (∀g ∈ A)[gIm]}, B↓ =
{g ∈ G | (∀m ∈ B)[gIm]}. In [7], independent sets in G and M are defined
and to each cardinal number p the incidence structure J p of independent
sets of cardinality p is assigned.

If (L,≤) is a complete lattice, then JL = (L, L, I) is an incidence struc-
ture in which aIb iff a ≤ b for a, b ∈ L. Join- and meet-independent sets in
(L,≤) are independent in JL in the sense of [7]. To (L,≤) and a cardinal
p the incidence structure J p

L = (Gp,Mp, Ip) is assigned, where AIpB iff
B ∈ UA for any A ∈ Gp, B ∈ Mp (see [6]). It is obvious that A↑ = UA,
B↓ = VB for A ∈ Gp, B ∈ Mp.
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Definition 4. An incidence structure J is said to be lattice-inadmissible if
there do not exist a complete lattice L and a cardinal number p > 2 such
that the associated incidence structure J p

L is isomorphic to J . Otherwise,
J is called lattice-admissible.

Remark 4. Each incidence structure J = (G,M, I) with {g}↑ = ∅ ({m}↓ =
∅, respectively) for some g ∈ G (m ∈ M) is lattice-inadmissible, since UA 6= ∅
(VB 6= ∅) for every A ∈ Gp (B ∈ Mp, resp.).

Some other examples of lattice-inadmissible incidence stuctures are given
below.

Proposition 8. Let X ∈ Gp ∩Mp. Then

(1) X 6 I pX,

and

(2) if XIpC and BIpX, then B 6 I pC.

Proof. From BIpX, we get B ∈ VX and, by Proposition 6, UX ∩ UB = ∅.
If XIpC and BIpC, then C ∈ UX ∩UB which is a contradiction. Obviously,
XIpJ(X) and M(X)IpX. Since M(X) ∈ VX , we obtain UX ∩ UM(X) = ∅
again. If XIpX, then X ∈ UX ∩ UM(X)which is a contradiction.

Corrolary 1.
1. If an incidence structure J = (G,M, I) contains an element x ∈ G ∩

M such that xIx, then J is lattice-inadmissible. In particular, for any
(non-empty) complete lattice (L,≤), the incidence structure JL is lattice-
inadmissible, since aIa for all a ∈ L.

2. If J = (G, M, I) contains elements x ∈ G ∩M , b ∈ G, c ∈ M such that
xIc, bIx and bIc, then J is lattice-inadmissible.

Theorem 1. Let (L,≤) be a complete lattice and p > 2. Then, in L, there
do not exist pairwise distinct subsets A,B, C ∈ Gp, X, Y, Z ∈ Mp such that
UA = {X}, UB = {X, Y }, UC = {Y, Z}, VX = {A,B}, VY = {B, C}.

Proof. Let us suppose that such subsets exist. Then obviously X = J(A).
If furthermore X = J(B), then UA = UB, by Proposition 7, which is a
contradiction. Hence, Y = J(B) and similarly Z = J(C). Since X =
J(A) = {∨ Ax | x ∈ A} ∈ Mp, we get M(X) = {∧Px | x ∈ A}, where
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Px = X r {∨ Ax}. Moreover, a ≤ ∧
Pa for all a ∈ A and a‖∧

Px for all
x ∈ Aa. It follows from VX = {A,B} that either A = M(X) or B = M(X).
Let B = M(X). Then there is a unique a ∈ A such that B = {∧ Pa} ∪ Aa,
where a <

∧
Pa and x =

∧
Px for all x ∈ Aa. Obviously, B r {∧ Pa} = Aa

and
∨

B∧
Pa

=
∨

Aa. For y ∈ Aa, we get x ≤ ∨
Ay for all x ∈ Ay r {a} and

also a ≤ ∧
Pa ≤

∨
Ay. This yields

∨
Ay =

∨
By and X = J(B), which is a

contradiction. Thus, A = M(X). In a similar way, from VY = {B,C}, we
show that B = M(Y ).

Since VX = {A,B} and A = M(X), there exists precisely one element
a ∈ A such that B = {b} ∪ Aa, where b < a and b ‖ x for all x ∈ Aa. Then
Bb = Aa and

∨
Bb =

∨
Aa. It follows from UB = {X, Y } and Y = J(B)

that there exists a unique y ∈ Aa such that
∨

By <
∨

Ay and
∨

Bx =
∨

Ax

for each x ∈ Aar{y}. Hence, Y = {∨ By}∪{
∨

Aa}∪{
∨

Ax | x ∈ Aar{y}}.
Since Y ∈ Mp, we get

∨
By ‖

∨
Ax for all x ∈ Ay.

It follows from VY = {B,C} and B = M(Y ) that C = {c} ∪ Bz for
some z ∈ B, where c < z and c ‖ x for all x ∈ Bz.

Since Z = J(C), it is obvious that Z = {∨Cq | q ∈ C}. It follows from
UC = {Y, Z} that |Y ∩ Z| = p− 1. Let us prove that X ∈ UC by assigning
a mapping γ of the set J(C) = Z onto the set X (from Proposition 5). We
examine all particular cases.

1. Suppose that z = b. Then c < b < a ≤ ∨
Ax for all x ∈ Aa and

C = {c} ∪Aa. Obviously c ‖ ∨
Aa and

∨
Cc =

∨
Aa. Moreover,

∨
Cy ≤∨

By <
∨

Ay and
∨

Cx ≤ ∨
Ax for all x ∈ Aa r {y}, where, since

|Y ∩ Z| = p− 1, precisely one inequality ≤ is replaced by the strict one.
Thus, Z = {∨ Aa} ∪ {

∨
Cx | x ∈ Aa}. Consider a mapping γ : Z → X

defined by setting γ(
∨

Aa) =
∨

Aa, γ(
∨

Cx) =
∨

Ax for all x ∈ Aa. It is
easy to see that m ≤ γ(m) for all m ∈ Z. We prove that γ(m)‖n for all
n ∈ Z r {m}.
a) Let

∨
Cy <

∨
By. Then Z = {∨ Cy} ∪ {

∨
Ax | x ∈ Ay}. It suffices

to show that
∨

Cy‖
∨

Aq for q ∈ Ay. Let
∨

Cy ≤
∨

Aa. Then, from
c ≤ ∨

Cy, we get c ≤ ∨
Aa, which is a contradiction. Let

∨
Cy ≤

∨
Ax

for x ∈ Aa r {y}. Then x ≤ ∨
Cy, which is a contradiction again.

b) Let
∨

Cq <
∨

Aq for a certain q ∈ Aa r {y}. Then Z = {∨ By} ∪
{∨Cq}∪ {

∨
Ax | x ∈ Ar {q, y}}. It suffices to show that

∨
Cq‖

∨
Ax

for x ∈ Aq. Suppose that
∨

Cq ≤
∨

Aa. Then, from c ≤ ∨
Cq, we get

c ≤ ∨
Aa, which is a contradiction. If

∨
Cq ≤

∨
Ax for x ∈ Aa r {q},

then we obtain a contradiction again, because of x ≤ ∨
Cq.
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2. Let z = y. Then c‖∨
Ay and

∨
Cc =

∨
By <

∨
Ay,

∨
Cb ≤

∨
Aa,∨

Cx ≤
∨

Ax for all x ∈ Aa r {y}. It is easy to see that Z = {∨By} ∪
{∨ Cq | q ∈ By}. The mapping γ is defined by setting γ(

∨
By) =

∨
Ay,

γ(
∨

Cb) =
∨

Aa, γ(
∨

Cx) =
∨

Ax for x ∈ Aar {y}. Further, we proceed
similarly to the case 1.

a) Let
∨

Cb <
∨

Aa. Then Z = {∨ By} ∪ {
∨

Cb} ∪ {
∨

Ax | x ∈ Aa r
{y}}. If

∨
Cb ≤

∨
Ay, then c ≤ ∨

Cb yields c ≤ ∨
Ay, which is a

contradiction. If
∨

Cb ≤
∨

Ax for x ∈ Ar {y}, then x ∈ ∨
Ax.

b) Let
∨

Cq <
∨

Aq for a certain q ∈ Aa r {y}. Then Z = {∨ By} ∪
{∨Cq} ∪ {

∨
Ax | x ∈ Br {q, y}}. Similarly to the preceding case, we

show that
∨

Cx‖
∨

Ax for x ∈ Aq.

3. Let z ∈ Aar{y}. Then c‖∨
Az and

∨
Cc =

∨
Bz =

∨
Az,

∨
Cb ≤

∨
Aa,∨

Cy ≤
∨

By <
∨

Ay and
∨

Cx ≤
∨

Ax for remaining x ∈ A. Let us put
γ(

∨
Cc) =

∨
Az, γ(

∨
Cb) =

∨
Aa, γ(

∨
Cy) =

∨
Ay and γ(

∨
Cx) =

∨
Ax

for remaining x ∈ A.

a) Let
∨

Cb <
∨

Aa. If
∨

Cb ≤
∨

Az, then c ≤ ∨
Az, which is a contra-

diction. For x ∈ Aar{z}, it follows from
∨

Cb ≤
∨

Ax that x ≤ ∨
Ax.

b) Let
∨

Cy <
∨

By. Then
∨

Cy ≤
∨

Aa implies b ≤ ∨
Aa,

∨
Cy ≤

∨
Az

implies c ≤ ∨
Az, and for remaining x ∈ A, we get x ≤ ∨

Ax, which
is a contradiction in all cases.

c) Let
∨

Cq <
∨

Aq for q ∈ Aar{y, z}. Similarly to the preceding cases,
we show that

∨
Cx‖

∨
Ax for x ∈ Aq.

Thus, we have obtained X ∈ UC , which contradicts our assumption UC =
{Y, Z}.

Remark 5. The dual statement also holds, where VX = {A}, VY = {A, B},
VZ = {B,C} and UA = {X, Y }, UB = {Y, Z}.

Corrolary 2. Every simple connection (of type 1, 1’, 2, 2’) of the length
greater than 1 is a lattice-inadmissible incidence structure.

Proof. Consider a complete lattice (L,≤). Let J p
L = (Gp,Mp, Ip) be a

simple connection of type 1 and of the length 2. Thus, its graph can be
sketched as follows:
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t t t

t t
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¢¢A
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A
AA

A0 A1 A2

B0 B1

Obviously, B0 = J(A0). If B0 = J(A1), then UA0 = UA1 , which is a contra-
diction. Hence, B1 = J(A1). However, it means that B1 = J(A2), which is
a contradiction again. Dually, we can proceed for any simple connection of
type 1’ and of the length 2.

Consider a simple connection J p
L of type 1 and of the length greater

than 2 or a simple connection of type 2 and of the length at least 2. Then
J p

L contains sets A0, A1, A2 ∈ Gp and B0, B1, B2 ∈ Mp such that UA0 =
{B0}, UA1 = {B0, B1}, UA2 = {B1, B2}, VB0 = {A0, A1}, VB1 = {A1, A2}.
According to Theorem, such sets cannot exist. Similar assertion for simple
connections of types 1’, 2’ holds dually.

Remark 6. Simple connections of the length 1 are lattice-admissible
incidence structures (refer to [6] for an example of a simple connection of
type 2).

Remark 7. There exists a complete lattices (L,≤) and a cardinal p such
that the incidence structure J p

L contains a simple connection of the length
greater than 1 as its substructure.

There exist (general) incidence structures J such that their correspond-
ing incidence structures J p of independent sets are simple connections. In
[8]–[10], there are such incidence structures J investigated that J p are sim-
ple connections of type 1.

References

[1] P. Crawley and R.P. Dilworth, Algebraic Theory of Lattices, Prentice Hall,
Englewood Cliffs 1973.

[2] G. Czédli, A.P. Huhn and E. T. Schmidt, Weakly independent sets in lattices,
Algebra Universalis 20 (1985), 194–196.

[3] V. Dlab, Lattice formulation of general algebraic dependence, Czechoslovak
Math. J. 20 (95) (1970), 603–615.



Lattice-inadmissible incidence structures 209

[4] B. Ganter and R. Wille, Formale Begriffsanalyse. Mathematische Grundla-
gen, Springer-Verlag, Berlin 1996; Eglish translation: Formal Concept Anal-
ysis. Mathematical Fundations, Springer-Verlag, Berlin 1999.

[5] G. Gra̋tzer, General Lattice Theory, Birkha̋user-Verlag, Basel 1998.

[6] F. Machala, Join-independent and meet-independent sets in complete lattices,
Order 18 (2001), 269–274.

[7] F. Machala, Incidence structures of independent sets, Acta Univ. Palacki.
Olomuc., Fac. Rerum Natur., Math. 38 (1999), 113–118.

[8] F. Machala, Incidence structures of type (p,n), Czechoslovak Math. J. 53
(128) (2003), 9–18.

[9] F. Machala, Special incidence structures of type (p, n), Acta Univ. Palack.
Olomuc., Fac. Rerum Natur., Math. 39 (2000), 123–134.

[10] F. Machala, Special incidence structures of type (p, n) - Part II, Acta Univ.
Palack. Olomuc., Fac. Rerum Natur., Math. 40 (2001), 131–142.

[11] V. Slezák, On the special context of independent sets, Discuss. Math. - Gen.
Algebra Appl. 21 (2001), 115–122.

[12] G. Szász, Introduction to Lattice Theory, Akadémiai Kiadó, Budapest 1963.
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