LATTICE-INADMISSIBLE INCIDENCE STRUCTURES *

František Machala and Vladimír Slezák
Department of Algebra and Geometry, Faculty of Science, Palacky University Tomkova 40, 77900 Olomouc, Czech Republic
e-mail: F.Machala@seznam.cz
e-mail: slezakv@seznam.cz

Abstract

Join-independent and meet-independent sets in complete lattices were defined in [6]. According to [6], to each complete lattice (L, \leq) and a cardinal number p one can assign (in a unique way) an incidence structure \mathcal{J}_{L}^{p} of independent sets of (L, \leq). In this paper some lattice-inadmissible incidence structures are founded, i.e. such incidence structures that are not isomorphic to any incidence structure \mathcal{J}_{L}^{p}.

Keywords: complete lattices, join-independent and meet-independent sets, incidence structures.

Mathematics Subject Classification 2000: 06B23, 08A02, 08A05.

Let (L, \leq) be a complete lattice and let \bigvee, \bigwedge be the supremum and the infimum of any subset of L, respectively. The least and the greatest elements in (L, \leq) are denoted by 0,1 respectively. If $x, y \in L$, then $x \| y$ means that x, y are incomparable in (L, \leq). If $X \subseteq L$, then we put $X_{x}:=X \backslash\{x\}$ for $x \in X$ and

$$
J(X)=\left\{\bigvee X_{x} \mid x \in X\right\}, \quad M(X)=\left\{\bigwedge X_{x} \mid x \in X\right\}
$$

[^0]Definition 1. A subset $X \subseteq L$ is said to be join-independent (meetindependent) if and only if $x \not \leq \bigvee X_{x}$ ($\bigwedge X_{x} \not \leq x$, resp.) for all $x \in X$.

Remark 1. The concept of independence have been studied in various types of lattices motivated by applications in algebra and geometry (refer to [1][3], [5], [12]). Our approach is explained in [6] in detail and it is used also in [11].

Remark 2. A set $X=\{x\}$ is join-independent (meet-independent) if and only if $x \neq 0(x \neq 1)$. If $\operatorname{card}(X)=|X| \geq 2$, then X is join-independent (meet-independent) if and only if $x \| \bigvee X_{x}\left(x \| \bigwedge X_{x}\right.$, resp.) for all $x \in X$.

To avoid trivial cases we will suppose that $|X|>2$ in what follows. The notions of join- and meet-independent sets are dual in complete lattices. Each assertion about join-independent sets admits its corresponding dual one which will not be stated explicitly.

The set of all join-independent (meet-independent) sets of cardinality $p>2$ will be denoted by G^{p} (M^{p}, respectively).

The following proposition is obvious:
Proposition 1. Let x, y be distinct elements of a set $X \in G^{p}$. Then $x \| y$ and $\bigvee X_{x} \| \bigvee X_{y}$.

To every subset $X \subseteq L$ we assign a system U_{X} of subsets of L by setting $Y \in U_{X}$ iff there exists a bijective mapping $\alpha: X \rightarrow Y$ such that $\bigvee X_{x} \leq$ $\alpha(x)$ and $\alpha(x) \| x$ for all $x \in X$. This mapping is called a U-mapping.

Dually, to a subset $X \subseteq L$ we assign a system V_{X} of subsets of L by setting $Z \in V_{X}$ iff there exists a bijective mapping $\beta: X \rightarrow Z$ such that $\beta(x) \leq \bigwedge X_{x}$ and $\beta(x) \| x$ for all $x \in X$. This mapping is called a V-mapping. It is easy to show: If α is a U-mapping, then α^{-1} is a V-mapping. The proof of the following proposition is straightforward.

Proposition 2. Let $X \subseteq L$. Then the following statements are equivalent:
(1) $X \in G^{p}$,
(2) $J(X) \in U_{X}$,
(3) $U_{X} \neq \emptyset$.

Proposition 3. Let $X \subseteq L$ where $|X|=p$. If $Y \in U_{X}$, then $Y \in M^{p}$ and $X \in V_{Y}$.

Proof. Let $Y \in U_{X}$. Then a U-mapping $\alpha: X \rightarrow Y$ exists. Let us put $Y_{\alpha(x)}=Y \backslash\{\alpha(x)\}$ for all $x \in X$. If $\alpha(y) \in Y_{\alpha(x)}$, then $y \in X_{x}$ and $x \in X_{y}$ which yields $x \leq \bigvee X_{y} \leq \alpha(y)$. Hence, $x \leq \bigwedge Y_{\alpha(x)}$. If $\bigwedge Y_{\alpha(x)} \leq \alpha(x)$, then $x \leq \alpha(x)$ which is a contradiction. Thus, $Y \in M^{p}$. Since $\alpha^{-1}: Y \rightarrow X$ is a V-mapping we get $X \in V_{Y}$.

Proposition 4. Let $X \subseteq L$. Then the following statements are equivalent:
(1) $X \in G^{p}$,
(2) $J(X) \in M^{p}$.

Proof. (1) $\Rightarrow(2)$: It follows from Proposition 2 and 3.
$(2) \Rightarrow(1):$ Let $J(X) \in M^{p}$. If we put $P_{x}=J(X) \backslash \bigvee X_{x}$ for $x \in X$, then $\bigwedge P_{x} \not \subset \bigvee X_{x}$ and $\bigwedge P_{x} \leq \bigvee X_{y}$ for each $y \in X_{x}$. Let us assume that $x \leq \bigvee X_{x}$. Then $\bigvee X_{x}=\bigvee X$ and $\bigvee X_{y} \leq \bigvee X_{x}$ for all $y \in X_{x}$. Thus, $\wedge P_{x} \leq \bigvee X_{x}$ which is a contradiction. Hence, $x \not \leq \bigvee X_{x}$ and $X \in G^{p}$.

Proposition 5. Let $X \in G^{p}$ and $Y \subseteq L$. Then
(1) $Y \in U_{X}$
if and only if
(2) there exists a bijective mapping $\gamma: J(X) \rightarrow Y$ such that $m \leq \gamma(m)$ for each $m \in J(X)$ and $\gamma(m) \| n$ for all $n \in J(X)$ distinct from m.

Proof. Since X is a join-independent set the mapping $\beta: x \mapsto \bigvee X_{x}$, $x \in X$, is a bijection of X onto $J(X)$.
$(1) \Rightarrow(2)$: It follows from $Y \in U_{X}$ that there exists a U-mapping $\alpha: X \rightarrow Y$. Let us put $\gamma=\alpha \beta^{-1}$. If $m \in J(X)$, then $m=\bigvee X_{x}$ for a certain $x \in X$ and $\gamma\left(\bigvee X_{x}\right)=\alpha(x)$. Thus, $\bigvee X_{x} \leq \gamma\left(\bigvee X_{x}\right)$. Consider $n \in J(X)$ where $n \neq m$. Then $n=\bigvee Y_{y}$ where $y \neq x$. If $\alpha(x) \leq \bigvee X_{y}$, then $\bigvee X_{x} \leq \alpha(x) \leq \bigvee X_{y}$ which contradicts Proposition 1. If $\bigvee X_{y} \leq \alpha(x)$, then $x \leq \bigvee X_{y} \leq \alpha(x)$, a contradiction again. Hence, $\alpha(x) \| \bigvee X_{y}$ and $\gamma(m) \| n$.
(2) \Rightarrow (1) : The mapping $\alpha=\gamma \beta$ is a bijection of X onto Y with $\alpha(x)=\gamma\left(\bigvee X_{x}\right)$ for $x \in X$. It suffices to show that α is a U-mapping.

Proposition 6. If $X \subseteq L$ and $Y \in V_{X}$, then $U_{X} \cap U_{Y}=\emptyset$.
Proof. If $|X|=p$, then $Y \in V_{X}$ yields $Y \in G^{p}$ and $J(Y) \in M^{p}$. By Proposition 3, $X \in U_{Y}$ and there exists a mapping $\gamma: J(Y) \rightarrow X$ given in Proposition 5. Assume that $A \in U_{X}$. According to Proposition 5, for each $a \in A$ there is a unique element $\bigvee X_{x} \in J(X)$ such that $\bigvee X_{x} \leq a$. Then $z \leq a$ for all $z \in X_{x}$. It follows from $p>2$ that X_{x} contains at least two distinct elements z_{1}, z_{2}. If we put $\gamma^{-1}\left(z_{1}\right)=m_{1}, \gamma^{-1}\left(z_{2}\right)=m_{2}$, then we obtain $m_{1} \leq z_{1} \leq a, m_{2} \leq z_{2} \leq a$. Thus, by Proposition 5 , $A \notin U_{Y}$.

Proposition 7. Let $X, Y \in G^{p}$. Then $J(X)=J(Y)$ if and only if $U_{X}=U_{Y}$.

Proof.

1. Let $J(X)=J(Y)$ and consider $C \in U_{X}$. Then, by Proposition 5 , there exists a mapping $\gamma: J(X) \rightarrow C$. Since $J(X)=J(Y)$, we obtain $C \in U_{Y}$ and thus, $U_{X} \subseteq U_{Y}$. It is also obvious that $U_{Y} \subseteq U_{X}$.
2. Let $U_{X}=U_{Y}$. Since $J(X) \in U_{X}$ and $J(Y) \in U_{Y}$, we get $J(X) \in U_{Y}$ and $J(Y) \in U_{X}$. It follows from $J(X) \in U_{Y}$ that there exists a bijection $\gamma: J(X) \rightarrow J(Y)$ established in Proposition 5 and for each $\bigvee X_{x} \in J(X)$ there exists a unique element $\bigvee Y_{y}$ such that $\bigvee X_{x} \leq \bigvee Y_{y}$. If we put $\xi_{1}(x)=y$, we get a bijective mapping of X onto Y. Similarly, with the help of $J(X) \in U_{Y}$ we define a bijective mapping $\xi_{2}: Y \rightarrow X$ such that $\xi_{2}(m)=n$ if and only if $\bigvee Y_{m} \leq \bigvee X_{n}$. For $x \in X$ we get $\bigvee X_{x} \leq$ $\bigvee Y_{\xi_{1}(x)} \leq \bigvee X_{\xi_{2} \xi_{1}(x)}$ and, by Proposition 1, $x=\xi_{2} \xi_{1}(x)$. Consider $\bigvee X_{x} \in J(X)$. Then $\bigvee X_{x} \leq \bigvee Y_{\xi_{1}(x)}$ and, with respect to $\xi_{1}(x) \in Y$, we obtain $\bigvee Y_{\xi_{1}(x)} \leq \bigvee X_{\xi_{2} \xi_{1}(x)}=\bigvee X_{x}$. Thus, $\bigvee X_{x}=\bigvee Y_{\xi_{1}(x)}$ and $\bigvee X_{x} \in J(Y)$. Therefore, $J(X) \subseteq J(Y)$ and $J(Y) \subseteq J(X)$ can be obtained similarly.

As in $[6]$, to (L, \leq) and p an incidence structure can be assigned. We recall the definition and some basic facts (more thoroughly, see [4]) about incidence structures needed in what follows.

Definition 2. An incidence structure (context) is a triple of sets $\mathcal{J}=$ (G, M, I), where $I \subset G \times M$. An incidence structure $\mathcal{J}_{1}=\left(G_{1}, M_{1}, I_{1}\right)$ is a substructure of \mathcal{J} if $G_{1} \subseteq G, M_{1} \subseteq M$ and $I_{1}=I \cap\left(G_{1} \times M_{1}\right)$.

Remark 3. Incidence structures are often given by their graphs: The elements of sets G, M are represented by points and those corresponding to elements $g \in G, m \in M$ are joined by a line-segment iff $g I m$.

Definition 3. An incidence structure $\mathcal{J}=(G, M, I)$ having the following incidence graph is called a simple connection
(a) of type 1 :

(b) of type 1^{\prime} :

(c) of type 2:

(d) of type 2 ':

The positive integer n is said to be a length of this connection.
Let $\mathcal{J}=(G, M, I)$ be an incidence structure. Then for every subset $A \subseteq G$, respectively $B \subseteq M$, we put $A^{\uparrow}=\{m \in M \mid(\forall g \in A)[g I m]\}, B^{\downarrow}=$ $\{g \in G \mid(\forall m \in B)[g I m]\}$. In [7], independent sets in G and M are defined and to each cardinal number p the incidence structure \mathcal{J}^{p} of independent sets of cardinality p is assigned.

If (L, \leq) is a complete lattice, then $\mathcal{J}_{L}=(L, L, I)$ is an incidence structure in which $a I b$ iff $a \leq b$ for $a, b \in L$. Join- and meet-independent sets in (L, \leq) are independent in \mathcal{J}_{L} in the sense of $[7]$. To (L, \leq) and a cardinal p the incidence structure $\mathcal{J}_{L}^{p}=\left(G^{p}, M^{p}, I^{p}\right)$ is assigned, where $A I^{p} B$ iff $B \in U_{A}$ for any $A \in G^{p}, B \in M^{p}$ (see [6]). It is obvious that $A^{\uparrow}=U_{A}$, $B^{\downarrow}=V_{B}$ for $A \in G^{p}, B \in M^{p}$.

Definition 4. An incidence structure \mathcal{J} is said to be lattice-inadmissible if there do not exist a complete lattice L and a cardinal number $p>2$ such that the associated incidence structure \mathcal{J}_{L}^{p} is isomorphic to \mathcal{J}. Otherwise, \mathcal{J} is called lattice-admissible.

Remark 4. Each incidence structure $\mathcal{J}=(G, M, I)$ with $\{g\}^{\uparrow}=\emptyset\left(\{m\}^{\downarrow}=\right.$ \emptyset, respectively) for some $g \in G(m \in M)$ is lattice-inadmissible, since $U_{A} \neq \emptyset$ ($V_{B} \neq \emptyset$) for every $A \in G^{p}$ ($B \in M^{p}$, resp.).

Some other examples of lattice-inadmissible incidence stuctures are given below.

Proposition 8. Let $X \in G^{p} \cap M^{p}$. Then
(1) $X Y^{p} X$,
and
(2) if $X I^{p} C$ and $B I^{p} X$, then $B Y^{p} C$.

Proof. From $B I^{p} X$, we get $B \in V_{X}$ and, by Proposition $6, U_{X} \cap U_{B}=\emptyset$. If $X I^{p} C$ and $B I^{p} C$, then $C \in U_{X} \cap U_{B}$ which is a contradiction. Obviously, $X I^{p} J(X)$ and $M(X) I^{p} X$. Since $M(X) \in V_{X}$, we obtain $U_{X} \cap U_{M(X)}=\emptyset$ again. If $X I^{p} X$, then $X \in U_{X} \cap U_{M(X)}$ which is a contradiction.

Corrolary 1.

1. If an incidence structure $\mathcal{J}=(G, M, I)$ contains an element $x \in G \cap$ M such that $x I x$, then \mathcal{J} is lattice-inadmissible. In particular, for any (non-empty) complete lattice (L, \leq), the incidence structure \mathcal{J}_{L} is latticeinadmissible, since aIa for all $a \in L$.
2. If $\mathcal{J}=(G, M, I)$ contains elements $x \in G \cap M, b \in G, c \in M$ such that xIc, bIx and bIc, then \mathcal{J} is lattice-inadmissible.

Theorem 1. Let (L, \leq) be a complete lattice and $p>2$. Then, in L, there do not exist pairwise distinct subsets $A, B, C \in G^{p}, X, Y, Z \in M^{p}$ such that $U_{A}=\{X\}, U_{B}=\{X, Y\}, U_{C}=\{Y, Z\}, V_{X}=\{A, B\}, V_{Y}=\{B, C\}$.

Proof. Let us suppose that such subsets exist. Then obviously $X=J(A)$. If furthermore $X=J(B)$, then $U_{A}=U_{B}$, by Proposition 7, which is a contradiction. Hence, $Y=J(B)$ and similarly $Z=J(C)$. Since $X=$ $J(A)=\left\{\bigvee A_{x} \mid x \in A\right\} \in M^{p}$, we get $M(X)=\left\{\bigwedge P_{x} \mid x \in A\right\}$, where
$P_{x}=X \backslash\left\{\bigvee A_{x}\right\}$. Moreover, $a \leq \bigwedge P_{a}$ for all $a \in A$ and $a \| \bigwedge P_{x}$ for all $x \in A_{a}$. It follows from $V_{X}=\{A, B\}$ that either $A=M(X)$ or $B=M(X)$. Let $B=M(X)$. Then there is a unique $a \in A$ such that $B=\left\{\bigwedge P_{a}\right\} \cup A_{a}$, where $a<\bigwedge P_{a}$ and $x=\bigwedge P_{x}$ for all $x \in A_{a}$. Obviously, $B \backslash\left\{\bigwedge P_{a}\right\}=A_{a}$ and $\bigvee B_{\bigwedge P_{a}}=\bigvee A_{a}$. For $y \in A_{a}$, we get $x \leq \bigvee A_{y}$ for all $x \in A_{y} \backslash\{a\}$ and also $a \leq \bigwedge P_{a} \leq \bigvee A_{y}$. This yields $\bigvee A_{y}=\bigvee B_{y}$ and $X=J(B)$, which is a contradiction. Thus, $A=M(X)$. In a similar way, from $V_{Y}=\{B, C\}$, we show that $B=M(Y)$.

Since $V_{X}=\{A, B\}$ and $A=M(X)$, there exists precisely one element $a \in A$ such that $B=\{b\} \cup A_{a}$, where $b<a$ and $b \| x$ for all $x \in A_{a}$. Then $B_{b}=A_{a}$ and $\bigvee B_{b}=\bigvee A_{a}$. It follows from $U_{B}=\{X, Y\}$ and $Y=J(B)$ that there exists a unique $y \in A_{a}$ such that $\bigvee B_{y}<\bigvee A_{y}$ and $\bigvee B_{x}=\bigvee A_{x}$ for each $x \in A_{a} \backslash\{y\}$. Hence, $Y=\left\{\bigvee B_{y}\right\} \cup\left\{\bigvee A_{a}\right\} \cup\left\{\bigvee A_{x} \mid x \in A_{a} \backslash\{y\}\right\}$. Since $Y \in M^{p}$, we get $\bigvee B_{y} \| \bigvee A_{x}$ for all $x \in A_{y}$.

It follows from $V_{Y}=\{B, C\}$ and $B=M(Y)$ that $C=\{c\} \cup B_{z}$ for some $z \in B$, where $c<z$ and $c \| x$ for all $x \in B_{z}$.

Since $Z=J(C)$, it is obvious that $Z=\left\{\bigvee C_{q} \mid q \in C\right\}$. It follows from $U_{C}=\{Y, Z\}$ that $|Y \cap Z|=p-1$. Let us prove that $X \in U_{C}$ by assigning a mapping γ of the set $J(C)=Z$ onto the set X (from Proposition 5). We examine all particular cases.

1. Suppose that $z=b$. Then $c<b<a \leq \bigvee A_{x}$ for all $x \in A_{a}$ and $C=\{c\} \cup A_{a}$. Obviously $c \| \bigvee A_{a}$ and $\bigvee C_{c}=\bigvee A_{a}$. Moreover, $\bigvee C_{y} \leq$ $\bigvee B_{y}<\bigvee A_{y}$ and $\bigvee C_{x} \leq \bigvee A_{x}$ for all $x \in A_{a} \backslash\{y\}$, where, since $|Y \cap Z|=p-1$, precisely one inequality \leq is replaced by the strict one. Thus, $Z=\left\{\bigvee A_{a}\right\} \cup\left\{\bigvee C_{x} \mid x \in A_{a}\right\}$. Consider a mapping $\gamma: Z \rightarrow X$ defined by setting $\gamma\left(\bigvee A_{a}\right)=\bigvee A_{a}, \gamma\left(\bigvee C_{x}\right)=\bigvee A_{x}$ for all $x \in A_{a}$. It is easy to see that $m \leq \gamma(m)$ for all $m \in Z$. We prove that $\gamma(m) \| n$ for all $n \in Z \backslash\{m\}$.
a) Let $\bigvee C_{y}<\bigvee B_{y}$. Then $Z=\left\{\bigvee C_{y}\right\} \cup\left\{\bigvee A_{x} \mid x \in A_{y}\right\}$. It suffices to show that $\bigvee C_{y} \| \bigvee A_{q}$ for $q \in A_{y}$. Let $\bigvee C_{y} \leq \bigvee A_{a}$. Then, from $c \leq \bigvee C_{y}$, we get $c \leq \bigvee A_{a}$, which is a contradiction. Let $\bigvee C_{y} \leq \bigvee A_{x}$ for $x \in A_{a} \backslash\{y\}$. Then $x \leq \bigvee C_{y}$, which is a contradiction again.
b) Let $\bigvee C_{q}<\bigvee A_{q}$ for a certain $q \in A_{a} \backslash\{y\}$. Then $Z=\left\{\bigvee B_{y}\right\} \cup$ $\left\{\bigvee C_{q}\right\} \cup\left\{\bigvee A_{x} \mid x \in A \backslash\{q, y\}\right\}$. It suffices to show that $\bigvee C_{q} \| \bigvee A_{x}$ for $x \in A_{q}$. Suppose that $\bigvee C_{q} \leq \bigvee A_{a}$. Then, from $c \leq \bigvee C_{q}$, we get $c \leq \bigvee A_{a}$, which is a contradiction. If $\bigvee C_{q} \leq \bigvee A_{x}$ for $x \in A_{a} \backslash\{q\}$, then we obtain a contradiction again, because of $x \leq \bigvee C_{q}$.
2. Let $z=y$. Then $c \| \bigvee A_{y}$ and $\bigvee C_{c}=\bigvee B_{y}<\bigvee A_{y}, \bigvee C_{b} \leq \bigvee A_{a}$, $\bigvee C_{x} \leq \bigvee A_{x}$ for all $x \in A_{a} \backslash\{y\}$. It is easy to see that $Z=\left\{\bigvee B_{y}\right\} \cup$ $\left\{\bigvee C_{q} \mid q \in B_{y}\right\}$. The mapping γ is defined by setting $\gamma\left(\bigvee B_{y}\right)=\bigvee A_{y}$, $\gamma\left(\bigvee C_{b}\right)=\bigvee A_{a}, \gamma\left(\bigvee C_{x}\right)=\bigvee A_{x}$ for $x \in A_{a} \backslash\{y\}$. Further, we proceed similarly to the case 1 .
a) Let $\bigvee C_{b}<\bigvee A_{a}$. Then $Z=\left\{\bigvee B_{y}\right\} \cup\left\{\bigvee C_{b}\right\} \cup\left\{\bigvee A_{x} \mid x \in A_{a} \backslash\right.$ $\{y\}\}$. If $\bigvee C_{b} \leq \bigvee A_{y}$, then $c \leq \bigvee C_{b}$ yields $c \leq \bigvee A_{y}$, which is a contradiction. If $\bigvee C_{b} \leq \bigvee A_{x}$ for $x \in A \backslash\{y\}$, then $x \in \bigvee A_{x}$.
b) Let $\bigvee C_{q}<\bigvee A_{q}$ for a certain $q \in A_{a} \backslash\{y\}$. Then $Z=\left\{\bigvee B_{y}\right\} \cup$ $\left\{\bigvee C_{q}\right\} \cup\left\{\bigvee A_{x} \mid x \in B \backslash\{q, y\}\right\}$. Similarly to the preceding case, we show that $\bigvee C_{x} \| \bigvee A_{x}$ for $x \in A_{q}$.
3. Let $z \in A_{a} \backslash\{y\}$. Then $c \| \bigvee A_{z}$ and $\bigvee C_{c}=\bigvee B_{z}=\bigvee A_{z}, \bigvee C_{b} \leq \bigvee A_{a}$, $\bigvee C_{y} \leq \bigvee B_{y}<\bigvee A_{y}$ and $\bigvee C_{x} \leq \bigvee A_{x}$ for remaining $x \in A$. Let us put $\gamma\left(\bigvee C_{c}\right)=\bigvee A_{z}, \gamma\left(\bigvee C_{b}\right)=\bigvee A_{a}, \gamma\left(\bigvee C_{y}\right)=\bigvee A_{y}$ and $\gamma\left(\bigvee C_{x}\right)=\bigvee A_{x}$ for remaining $x \in A$.
a) Let $\bigvee C_{b}<\bigvee A_{a}$. If $\bigvee C_{b} \leq \bigvee A_{z}$, then $c \leq \bigvee A_{z}$, which is a contradiction. For $x \in A_{a} \backslash\{z\}$, it follows from $\bigvee C_{b} \leq \bigvee A_{x}$ that $x \leq \bigvee A_{x}$.
b) Let $\bigvee C_{y}<\bigvee B_{y}$. Then $\bigvee C_{y} \leq \bigvee A_{a}$ implies $b \leq \bigvee A_{a}, \bigvee C_{y} \leq \bigvee A_{z}$ implies $c \leq \bigvee A_{z}$, and for remaining $x \in A$, we get $x \leq \bigvee A_{x}$, which is a contradiction in all cases.
c) Let $\bigvee C_{q}<\bigvee A_{q}$ for $q \in A_{a} \backslash\{y, z\}$. Similarly to the preceding cases, we show that $\bigvee C_{x} \| \bigvee A_{x}$ for $x \in A_{q}$.
Thus, we have obtained $X \in U_{C}$, which contradicts our assumption $U_{C}=$ $\{Y, Z\}$.

Remark 5. The dual statement also holds, where $V_{X}=\{A\}, V_{Y}=\{A, B\}$, $V_{Z}=\{B, C\}$ and $U_{A}=\{X, Y\}, U_{B}=\{Y, Z\}$.

Corrolary 2. Every simple connection (of type 1, 1', 2, 2') of the length greater than 1 is a lattice-inadmissible incidence structure.

Proof. Consider a complete lattice (L, \leq). Let $\mathcal{J}_{L}^{p}=\left(G^{p}, M^{p}, I^{p}\right)$ be a simple connection of type 1 and of the length 2 . Thus, its graph can be sketched as follows:

Obviously, $B_{0}=J\left(A_{0}\right)$. If $B_{0}=J\left(A_{1}\right)$, then $U_{A_{0}}=U_{A_{1}}$, which is a contradiction. Hence, $B_{1}=J\left(A_{1}\right)$. However, it means that $B_{1}=J\left(A_{2}\right)$, which is a contradiction again. Dually, we can proceed for any simple connection of type 1 ' and of the length 2.

Consider a simple connection \mathcal{J}_{L}^{p} of type 1 and of the length greater than 2 or a simple connection of type 2 and of the length at least 2 . Then \mathcal{J}_{L}^{p} contains sets $A_{0}, A_{1}, A_{2} \in G^{p}$ and $B_{0}, B_{1}, B_{2} \in M^{p}$ such that $U_{A_{0}}=$ $\left\{B_{0}\right\}, U_{A_{1}}=\left\{B_{0}, B_{1}\right\}, U_{A_{2}}=\left\{B_{1}, B_{2}\right\}, V_{B_{0}}=\left\{A_{0}, A_{1}\right\}, V_{B_{1}}=\left\{A_{1}, A_{2}\right\}$. According to Theorem, such sets cannot exist. Similar assertion for simple connections of types $1^{\prime}, 2^{\prime}$ holds dually.

Remark 6. Simple connections of the length 1 are lattice-admissible incidence structures (refer to [6] for an example of a simple connection of type 2).

Remark 7. There exists a complete lattices (L, \leq) and a cardinal p such that the incidence structure \mathcal{J}_{L}^{p} contains a simple connection of the length greater than 1 as its substructure.

There exist (general) incidence structures \mathcal{J} such that their corresponding incidence structures \mathcal{J}^{p} of independent sets are simple connections. In [8]-[10], there are such incidence structures \mathcal{J} investigated that \mathcal{J}^{p} are simple connections of type 1 .

References

[1] P. Crawley and R.P. Dilworth, Algebraic Theory of Lattices, Prentice Hall, Englewood Cliffs 1973.
[2] G. Czédli, A.P. Huhn and E. T. Schmidt, Weakly independent sets in lattices, Algebra Universalis 20 (1985), 194-196.
[3] V. Dlab, Lattice formulation of general algebraic dependence, Czechoslovak Math. J. 20 (95) (1970), 603-615.
[4] B. Ganter and R. Wille, Formale Begriffsanalyse. Mathematische Grundlagen, Springer-Verlag, Berlin 1996; Eglish translation: Formal Concept Analysis. Mathematical Fundations, Springer-Verlag, Berlin 1999.
[5] G. Grätzer, General Lattice Theory, Birkha̋user-Verlag, Basel 1998.
[6] F. Machala, Join-independent and meet-independent sets in complete lattices, Order 18 (2001), 269-274.
[7] F. Machala, Incidence structures of independent sets, Acta Univ. Palacki. Olomuc., Fac. Rerum Natur., Math. 38 (1999), 113-118.
[8] F. Machala, Incidence structures of type (p, n), Czechoslovak Math. J. 53 (128) (2003), 9-18.
[9] F. Machala, Special incidence structures of type (p, n), Acta Univ. Palack. Olomuc., Fac. Rerum Natur., Math. 39 (2000), 123-134.
[10] F. Machala, Special incidence structures of type (p, n) - Part II, Acta Univ. Palack. Olomuc., Fac. Rerum Natur., Math. 40 (2001), 131-142.
[11] V. Slezák, On the special context of independent sets, Discuss. Math. - Gen. Algebra Appl. 21 (2001), 115-122.
[12] G. Szász, Introduction to Lattice Theory, Akadémiai Kiadó, Budapest 1963.
Received 21 January 2004
Revised 11 December 2004

[^0]: *Supported by the Council of Czech Government J14/98: 153100011.

