LATTICE-INADMISSIBLE INCIDENCE STRUCTURES *

FRANTIŠEK MACHALA AND VLADIMÍR SLEZÁK

Department of Algebra and Geometry, Faculty of Science, Palacký University Tomkova 40, 779 00 Olomouc, Czech Republic

> e-mail: F.Machala@seznam.cz e-mail: slezakv@seznam.cz

Abstract

Join-independent and meet-independent sets in complete lattices were defined in [6]. According to [6], to each complete lattice (L, \leq) and a cardinal number p one can assign (in a unique way) an incidence structure \mathcal{J}_{L}^{p} of independent sets of (L, \leq) . In this paper some lattice-inadmissible incidence structures are founded, i.e. such incidence structures that are not isomorphic to any incidence structure \mathcal{J}_{L}^{p} .

Keywords: complete lattices, join-independent and meet-independent sets, incidence structures.

Mathematics Subject Classification 2000: 06B23, 08A02, 08A05.

Let (L, \leq) be a complete lattice and let \bigvee, \bigwedge be the supremum and the infimum of any subset of L, respectively. The least and the greatest elements in (L, \leq) are denoted by 0, 1 respectively. If $x, y \in L$, then x || y means that x, y are incomparable in (L, \leq) . If $X \subseteq L$, then we put $X_x := X \setminus \{x\}$ for $x \in X$ and

$$J(X) = \left\{ \bigvee X_x \mid x \in X \right\}, \quad M(X) = \left\{ \bigwedge X_x \mid x \in X \right\}.$$

^{*}Supported by the Council of Czech Government J14/98: 153100011.

Definition 1. A subset $X \subseteq L$ is said to be *join-independent (meet-independent)* if and only if $x \not\leq \bigvee X_x$ ($\bigwedge X_x \not\leq x$, resp.) for all $x \in X$.

Remark 1. The concept of independence have been studied in various types of lattices motivated by applications in algebra and geometry (refer to [1]–[3], [5], [12]). Our approach is explained in [6] in detail and it is used also in [11].

Remark 2. A set $X = \{x\}$ is *join-independent (meet-independent)* if and only if $x \neq 0$ $(x \neq 1)$. If $\operatorname{card}(X) = |X| \geq 2$, then X is join-independent (meet-independent) if and only if $x || \bigvee X_x$ $(x || \bigwedge X_x$, resp.) for all $x \in X$.

To avoid trivial cases we will suppose that |X| > 2 in what follows. The notions of join- and meet-independent sets are dual in complete lattices. Each assertion about join-independent sets admits its corresponding dual one which will not be stated explicitly.

The set of all join-independent (meet-independent) sets of cardinality p > 2 will be denoted by G^p (M^p , respectively).

The following proposition is obvious:

Proposition 1. Let x, y be distinct elements of a set $X \in G^p$. Then x || yand $\bigvee X_x || \bigvee X_y$.

To every subset $X \subseteq L$ we assign a system U_X of subsets of L by setting $Y \in U_X$ iff there exists a bijective mapping $\alpha : X \to Y$ such that $\bigvee X_x \leq \alpha(x)$ and $\alpha(x) || x$ for all $x \in X$. This mapping is called a *U*-mapping.

Dually, to a subset $X \subseteq L$ we assign a system V_X of subsets of L by setting $Z \in V_X$ iff there exists a bijective mapping $\beta : X \to Z$ such that $\beta(x) \leq \bigwedge X_x$ and $\beta(x) || x$ for all $x \in X$. This mapping is called a *V*-mapping. It is easy to show: If α is a *U*-mapping, then α^{-1} is a *V*-mapping. The proof of the following proposition is straightforward.

Proposition 2. Let $X \subseteq L$. Then the following statements are equivalent:

- (1) $X \in G^p$,
- (2) $J(X) \in U_X$,
- (3) $U_X \neq \emptyset$.

Proposition 3. Let $X \subseteq L$ where |X| = p. If $Y \in U_X$, then $Y \in M^p$ and $X \in V_Y$.

Proof. Let $Y \in U_X$. Then a *U*-mapping $\alpha : X \to Y$ exists. Let us put $Y_{\alpha(x)} = Y \setminus \{\alpha(x)\}$ for all $x \in X$. If $\alpha(y) \in Y_{\alpha(x)}$, then $y \in X_x$ and $x \in X_y$ which yields $x \leq \bigvee X_y \leq \alpha(y)$. Hence, $x \leq \bigwedge Y_{\alpha(x)}$. If $\bigwedge Y_{\alpha(x)} \leq \alpha(x)$, then $x \leq \alpha(x)$ which is a contradiction. Thus, $Y \in M^p$. Since $\alpha^{-1} : Y \to X$ is a *V*-mapping we get $X \in V_Y$.

Proposition 4. Let $X \subseteq L$. Then the following statements are equivalent:

- (1) $X \in G^p$,
- (2) $J(X) \in M^p$.

Proof. $(1) \Rightarrow (2)$: It follows from Proposition 2 and 3.

 $(2) \Rightarrow (1)$: Let $J(X) \in M^p$. If we put $P_x = J(X) \setminus \bigvee X_x$ for $x \in X$, then $\bigwedge P_x \not\leq \bigvee X_x$ and $\bigwedge P_x \leq \bigvee X_y$ for each $y \in X_x$. Let us assume that $x \leq \bigvee X_x$. Then $\bigvee X_x = \bigvee X$ and $\bigvee X_y \leq \bigvee X_x$ for all $y \in X_x$. Thus, $\bigwedge P_x \leq \bigvee X_x$ which is a contradiction. Hence, $x \not\leq \bigvee X_x$ and $X \in G^p$.

Proposition 5. Let $X \in G^p$ and $Y \subseteq L$. Then

(1) $Y \in U_X$

if and only if

(2) there exists a bijective mapping $\gamma : J(X) \to Y$ such that $m \leq \gamma(m)$ for each $m \in J(X)$ and $\gamma(m) || n$ for all $n \in J(X)$ distinct from m.

Proof. Since X is a join-independent set the mapping $\beta : x \mapsto \bigvee X_x$, $x \in X$, is a bijection of X onto J(X).

(1) \Rightarrow (2) : It follows from $Y \in U_X$ that there exists a *U*-mapping $\alpha : X \to Y$. Let us put $\gamma = \alpha \beta^{-1}$. If $m \in J(X)$, then $m = \bigvee X_x$ for a certain $x \in X$ and $\gamma(\bigvee X_x) = \alpha(x)$. Thus, $\bigvee X_x \leq \gamma(\bigvee X_x)$. Consider $n \in J(X)$ where $n \neq m$. Then $n = \bigvee Y_y$ where $y \neq x$. If $\alpha(x) \leq \bigvee X_y$, then $\bigvee X_x \leq \alpha(x) \leq \bigvee X_y$ which contradicts Proposition 1. If $\bigvee X_y \leq \alpha(x)$, then $x \leq \bigvee X_y \leq \alpha(x)$, a contradiction again. Hence, $\alpha(x) \parallel \bigvee X_y$ and $\gamma(m) \parallel n$.

(2) \Rightarrow (1) : The mapping $\alpha = \gamma \beta$ is a bijection of X onto Y with $\alpha(x) = \gamma(\bigvee X_x)$ for $x \in X$. It suffices to show that α is a U-mapping.

Proposition 6. If $X \subseteq L$ and $Y \in V_X$, then $U_X \cap U_Y = \emptyset$.

Proof. If |X| = p, then $Y \in V_X$ yields $Y \in G^p$ and $J(Y) \in M^p$. By Proposition 3, $X \in U_Y$ and there exists a mapping $\gamma : J(Y) \to X$ given in Proposition 5. Assume that $A \in U_X$. According to Proposition 5, for each $a \in A$ there is a unique element $\bigvee X_x \in J(X)$ such that $\bigvee X_x \leq a$. Then $z \leq a$ for all $z \in X_x$. It follows from p > 2 that X_x contains at least two distinct elements z_1, z_2 . If we put $\gamma^{-1}(z_1) = m_1, \gamma^{-1}(z_2) = m_2$, then we obtain $m_1 \leq z_1 \leq a, m_2 \leq z_2 \leq a$. Thus, by Proposition 5, $A \notin U_Y$.

Proposition 7. Let $X, Y \in G^p$. Then J(X) = J(Y) if and only if $U_X = U_Y$.

Proof.

- 1. Let J(X) = J(Y) and consider $C \in U_X$. Then, by Proposition 5, there exists a mapping $\gamma : J(X) \to C$. Since J(X) = J(Y), we obtain $C \in U_Y$ and thus, $U_X \subseteq U_Y$. It is also obvious that $U_Y \subseteq U_X$.
- 2. Let $U_X = U_Y$. Since $J(X) \in U_X$ and $J(Y) \in U_Y$, we get $J(X) \in U_Y$ and $J(Y) \in U_X$. It follows from $J(X) \in U_Y$ that there exists a bijection $\gamma: J(X) \to J(Y)$ established in Proposition 5 and for each $\bigvee X_x \in J(X)$ there exists a unique element $\bigvee Y_y$ such that $\bigvee X_x \leq \bigvee Y_y$. If we put $\xi_1(x) = y$, we get a bijective mapping of X onto Y. Similarly, with the help of $J(X) \in U_Y$ we define a bijective mapping $\xi_2: Y \to X$ such that $\xi_2(m) = n$ if and only if $\bigvee Y_m \leq \bigvee X_n$. For $x \in X$ we get $\bigvee X_x \leq$ $\bigvee Y_{\xi_1(x)} \leq \bigvee X_{\xi_2\xi_1(x)}$ and, by Proposition 1, $x = \xi_2\xi_1(x)$. Consider $\bigvee X_x \in J(X)$. Then $\bigvee X_x \leq \bigvee Y_{\xi_1(x)}$ and, with respect to $\xi_1(x) \in Y$, we obtain $\bigvee Y_{\xi_1(x)} \leq \bigvee X_{\xi_2\xi_1(x)} = \bigvee X_x$. Thus, $\bigvee X_x = \bigvee Y_{\xi_1(x)}$ and $\bigvee X_x \in J(Y)$. Therefore, $J(X) \subseteq J(Y)$ and $J(Y) \subseteq J(X)$ can be obtained similarly.

As in [6], to (L, \leq) and p an incidence structure can be assigned. We recall the definition and some basic facts (more thoroughly, see [4]) about incidence structures needed in what follows.

Definition 2. An *incidence structure (context)* is a triple of sets $\mathcal{J} = (G, M, I)$, where $I \subset G \times M$. An incidence structure $\mathcal{J}_1 = (G_1, M_1, I_1)$ is a *substructure* of \mathcal{J} if $G_1 \subseteq G$, $M_1 \subseteq M$ and $I_1 = I \cap (G_1 \times M_1)$.

Remark 3. Incidence structures are often given by their graphs: The elements of sets G, M are represented by points and those corresponding to elements $g \in G, m \in M$ are joined by a line-segment iff gIm.

Definition 3. An incidence structure $\mathcal{J} = (G, M, I)$ having the following incidence graph is called a *simple connection*

(a) of type 1:

(b) of type 1':

The positive integer n is said to be a *length* of this connection.

Let $\mathcal{J} = (G, M, I)$ be an incidence structure. Then for every subset $A \subseteq G$, respectively $B \subseteq M$, we put $A^{\uparrow} = \{m \in M \mid (\forall g \in A)[gIm]\}, B^{\downarrow} = \{g \in G \mid (\forall m \in B)[gIm]\}$. In [7], *independent sets* in G and M are defined and to each cardinal number p the incidence structure \mathcal{J}^p of independent sets of cardinality p is assigned.

If (L, \leq) is a complete lattice, then $\mathcal{J}_L = (L, L, I)$ is an incidence structure in which aIb iff $a \leq b$ for $a, b \in L$. Join- and meet-independent sets in (L, \leq) are independent in \mathcal{J}_L in the sense of [7]. To (L, \leq) and a cardinal p the incidence structure $\mathcal{J}_L^p = (G^p, M^p, I^p)$ is assigned, where AI^pB iff $B \in U_A$ for any $A \in G^p$, $B \in M^p$ (see [6]). It is obvious that $A^{\uparrow} = U_A$, $B^{\downarrow} = V_B$ for $A \in G^p$, $B \in M^p$. **Definition 4.** An incidence structure \mathcal{J} is said to be *lattice-inadmissible* if there do not exist a complete lattice L and a cardinal number p > 2 such that the associated incidence structure \mathcal{J}_L^p is isomorphic to \mathcal{J} . Otherwise, \mathcal{J} is called *lattice-admissible*.

Remark 4. Each incidence structure $\mathcal{J} = (G, M, I)$ with $\{g\}^{\uparrow} = \emptyset$ $(\{m\}^{\downarrow} = \emptyset, \text{ respectively})$ for some $g \in G$ $(m \in M)$ is lattice-inadmissible, since $U_A \neq \emptyset$ $(V_B \neq \emptyset)$ for every $A \in G^p$ $(B \in M^p, \text{ resp.})$.

Some other examples of lattice-inadmissible incidence stuctures are given below.

Proposition 8. Let $X \in G^p \cap M^p$. Then

(1) $X \not I^p X$,

and

(2) if XI^pC and BI^pX , then $B \not\!\!\!\!/ ^pC$.

Proof. From BI^pX , we get $B \in V_X$ and, by Proposition 6, $U_X \cap U_B = \emptyset$. If XI^pC and BI^pC , then $C \in U_X \cap U_B$ which is a contradiction. Obviously, $XI^pJ(X)$ and $M(X)I^pX$. Since $M(X) \in V_X$, we obtain $U_X \cap U_{M(X)} = \emptyset$ again. If XI^pX , then $X \in U_X \cap U_{M(X)}$ which is a contradiction.

Corrolary 1.

- 1. If an incidence structure $\mathcal{J} = (G, M, I)$ contains an element $x \in G \cap M$ such that xIx, then \mathcal{J} is lattice-inadmissible. In particular, for any (non-empty) complete lattice (L, \leq) , the incidence structure \mathcal{J}_L is lattice-inadmissible, since aIa for all $a \in L$.
- 2. If $\mathcal{J} = (G, M, I)$ contains elements $x \in G \cap M$, $b \in G$, $c \in M$ such that xIc, bIx and bIc, then \mathcal{J} is lattice-inadmissible.

Theorem 1. Let (L, \leq) be a complete lattice and p > 2. Then, in L, there do not exist pairwise distinct subsets $A, B, C \in G^p$, $X, Y, Z \in M^p$ such that $U_A = \{X\}, U_B = \{X,Y\}, U_C = \{Y,Z\}, V_X = \{A,B\}, V_Y = \{B,C\}.$

Proof. Let us suppose that such subsets exist. Then obviously X = J(A). If furthermore X = J(B), then $U_A = U_B$, by Proposition 7, which is a contradiction. Hence, Y = J(B) and similarly Z = J(C). Since $X = J(A) = \{ \bigvee A_x \mid x \in A \} \in M^p$, we get $M(X) = \{ \bigwedge P_x \mid x \in A \}$, where $P_x = X \setminus \{ \bigvee A_x \}$. Moreover, $a \leq \bigwedge P_a$ for all $a \in A$ and $a \parallel \bigwedge P_x$ for all $x \in A_a$. It follows from $V_X = \{A, B\}$ that either A = M(X) or B = M(X). Let B = M(X). Then there is a unique $a \in A$ such that $B = \{\bigwedge P_a\} \cup A_a$, where $a < \bigwedge P_a$ and $x = \bigwedge P_x$ for all $x \in A_a$. Obviously, $B \setminus \{\bigwedge P_a\} = A_a$ and $\bigvee B_{\bigwedge P_a} = \bigvee A_a$. For $y \in A_a$, we get $x \leq \bigvee A_y$ for all $x \in A_y \setminus \{a\}$ and also $a \leq \bigwedge P_a \leq \bigvee A_y$. This yields $\bigvee A_y = \bigvee B_y$ and X = J(B), which is a contradiction. Thus, A = M(X). In a similar way, from $V_Y = \{B, C\}$, we show that B = M(Y).

Since $V_X = \{A, B\}$ and A = M(X), there exists precisely one element $a \in A$ such that $B = \{b\} \cup A_a$, where b < a and $b \parallel x$ for all $x \in A_a$. Then $B_b = A_a$ and $\bigvee B_b = \bigvee A_a$. It follows from $U_B = \{X, Y\}$ and Y = J(B) that there exists a unique $y \in A_a$ such that $\bigvee B_y < \bigvee A_y$ and $\bigvee B_x = \bigvee A_x$ for each $x \in A_a \setminus \{y\}$. Hence, $Y = \{\bigvee B_y\} \cup \{\bigvee A_a\} \cup \{\bigvee A_x \mid x \in A_a \setminus \{y\}\}$. Since $Y \in M^p$, we get $\bigvee B_y \parallel \bigvee A_x$ for all $x \in A_y$.

It follows from $V_Y = \{B, C\}$ and B = M(Y) that $C = \{c\} \cup B_z$ for some $z \in B$, where c < z and $c \parallel x$ for all $x \in B_z$.

Since Z = J(C), it is obvious that $Z = \{\bigvee C_q \mid q \in C\}$. It follows from $U_C = \{Y, Z\}$ that $|Y \cap Z| = p - 1$. Let us prove that $X \in U_C$ by assigning a mapping γ of the set J(C) = Z onto the set X (from Proposition 5). We examine all particular cases.

- 1. Suppose that z = b. Then $c < b < a \leq \bigvee A_x$ for all $x \in A_a$ and $C = \{c\} \cup A_a$. Obviously $c \parallel \bigvee A_a$ and $\bigvee C_c = \bigvee A_a$. Moreover, $\bigvee C_y \leq \bigvee B_y < \bigvee A_y$ and $\bigvee C_x \leq \bigvee A_x$ for all $x \in A_a \smallsetminus \{y\}$, where, since $|Y \cap Z| = p 1$, precisely one inequality \leq is replaced by the strict one. Thus, $Z = \{\bigvee A_a\} \cup \{\bigvee C_x \mid x \in A_a\}$. Consider a mapping $\gamma : Z \to X$ defined by setting $\gamma(\bigvee A_a) = \bigvee A_a$, $\gamma(\bigvee C_x) = \bigvee A_x$ for all $x \in A_a$. It is easy to see that $m \leq \gamma(m)$ for all $m \in Z$. We prove that $\gamma(m) \| n$ for all $n \in Z \setminus \{m\}$.
 - a) Let $\bigvee C_y < \bigvee B_y$. Then $Z = \{\bigvee C_y\} \cup \{\bigvee A_x \mid x \in A_y\}$. It suffices to show that $\bigvee C_y || \bigvee A_q$ for $q \in A_y$. Let $\bigvee C_y \leq \bigvee A_a$. Then, from $c \leq \bigvee C_y$, we get $c \leq \bigvee A_a$, which is a contradiction. Let $\bigvee C_y \leq \bigvee A_x$ for $x \in A_a \setminus \{y\}$. Then $x \leq \bigvee C_y$, which is a contradiction again.
 - b) Let $\bigvee C_q < \bigvee A_q$ for a certain $q \in A_a \setminus \{y\}$. Then $Z = \{\bigvee B_y\} \cup \{\bigvee C_q\} \cup \{\bigvee A_x \mid x \in A \setminus \{q, y\}\}$. It suffices to show that $\bigvee C_q \parallel \bigvee A_x$ for $x \in A_q$. Suppose that $\bigvee C_q \leq \bigvee A_a$. Then, from $c \leq \bigvee C_q$, we get $c \leq \bigvee A_a$, which is a contradiction. If $\bigvee C_q \leq \bigvee A_x$ for $x \in A_a \setminus \{q\}$, then we obtain a contradiction again, because of $x \leq \bigvee C_q$.

- 2. Let z = y. Then $c || \bigvee A_y$ and $\bigvee C_c = \bigvee B_y < \bigvee A_y$, $\bigvee C_b \leq \bigvee A_a$, $\bigvee C_x \leq \bigvee A_x$ for all $x \in A_a \setminus \{y\}$. It is easy to see that $Z = \{\bigvee B_y\} \cup \{\bigvee C_q \mid q \in B_y\}$. The mapping γ is defined by setting $\gamma(\bigvee B_y) = \bigvee A_y$, $\gamma(\bigvee C_b) = \bigvee A_a$, $\gamma(\bigvee C_x) = \bigvee A_x$ for $x \in A_a \setminus \{y\}$. Further, we proceed similarly to the case 1.
 - a) Let $\bigvee C_b < \bigvee A_a$. Then $Z = \{\bigvee B_y\} \cup \{\bigvee C_b\} \cup \{\bigvee A_x \mid x \in A_a \setminus \{y\}\}$. If $\bigvee C_b \leq \bigvee A_y$, then $c \leq \bigvee C_b$ yields $c \leq \bigvee A_y$, which is a contradiction. If $\bigvee C_b \leq \bigvee A_x$ for $x \in A \setminus \{y\}$, then $x \in \bigvee A_x$.
 - b) Let $\bigvee C_q < \bigvee A_q$ for a certain $q \in A_a \setminus \{y\}$. Then $Z = \{\bigvee B_y\} \cup \{\bigvee C_q\} \cup \{\bigvee A_x \mid x \in B \setminus \{q, y\}\}$. Similarly to the preceding case, we show that $\bigvee C_x || \bigvee A_x$ for $x \in A_q$.
- 3. Let $z \in A_a \setminus \{y\}$. Then $c \parallel \bigvee A_z$ and $\bigvee C_c = \bigvee B_z = \bigvee A_z$, $\bigvee C_b \leq \bigvee A_a$, $\bigvee C_y \leq \bigvee B_y < \bigvee A_y$ and $\bigvee C_x \leq \bigvee A_x$ for remaining $x \in A$. Let us put $\gamma(\bigvee C_c) = \bigvee A_z$, $\gamma(\bigvee C_b) = \bigvee A_a$, $\gamma(\bigvee C_y) = \bigvee A_y$ and $\gamma(\bigvee C_x) = \bigvee A_x$ for remaining $x \in A$.
 - a) Let $\bigvee C_b < \bigvee A_a$. If $\bigvee C_b \le \bigvee A_z$, then $c \le \bigvee A_z$, which is a contradiction. For $x \in A_a \setminus \{z\}$, it follows from $\bigvee C_b \le \bigvee A_x$ that $x \le \bigvee A_x$.
 - b) Let $\bigvee C_y < \bigvee B_y$. Then $\bigvee C_y \leq \bigvee A_a$ implies $b \leq \bigvee A_a$, $\bigvee C_y \leq \bigvee A_z$ implies $c \leq \bigvee A_z$, and for remaining $x \in A$, we get $x \leq \bigvee A_x$, which is a contradiction in all cases.
 - c) Let $\bigvee C_q < \bigvee A_q$ for $q \in A_a \setminus \{y, z\}$. Similarly to the preceding cases, we show that $\bigvee C_x || \bigvee A_x$ for $x \in A_q$.

Thus, we have obtained $X \in U_C$, which contradicts our assumption $U_C = \{Y, Z\}$.

Remark 5. The dual statement also holds, where $V_X = \{A\}$, $V_Y = \{A, B\}$, $V_Z = \{B, C\}$ and $U_A = \{X, Y\}$, $U_B = \{Y, Z\}$.

Corrolary 2. Every simple connection (of type 1, 1', 2, 2') of the length greater than 1 is a lattice-inadmissible incidence structure.

Proof. Consider a complete lattice (L, \leq) . Let $\mathcal{J}_L^p = (G^p, M^p, I^p)$ be a simple connection of type 1 and of the length 2. Thus, its graph can be sketched as follows:

Obviously, $B_0 = J(A_0)$. If $B_0 = J(A_1)$, then $U_{A_0} = U_{A_1}$, which is a contradiction. Hence, $B_1 = J(A_1)$. However, it means that $B_1 = J(A_2)$, which is a contradiction again. Dually, we can proceed for any simple connection of type 1' and of the length 2.

Consider a simple connection \mathcal{J}_L^p of type 1 and of the length greater than 2 or a simple connection of type 2 and of the length at least 2. Then \mathcal{J}_L^p contains sets $A_0, A_1, A_2 \in G^p$ and $B_0, B_1, B_2 \in M^p$ such that $U_{A_0} =$ $\{B_0\}, U_{A_1} = \{B_0, B_1\}, U_{A_2} = \{B_1, B_2\}, V_{B_0} = \{A_0, A_1\}, V_{B_1} = \{A_1, A_2\}.$ According to Theorem, such sets cannot exist. Similar assertion for simple connections of types 1', 2' holds dually.

Remark 6. Simple connections of the length 1 are lattice-admissible incidence structures (refer to [6] for an example of a simple connection of type 2).

Remark 7. There exists a complete lattices (L, \leq) and a cardinal p such that the incidence structure \mathcal{J}_L^p contains a simple connection of the length greater than 1 as its substructure.

There exist (general) incidence structures \mathcal{J} such that their corresponding incidence structures \mathcal{J}^p of independent sets are simple connections. In [8]–[10], there are such incidence structures \mathcal{J} investigated that \mathcal{J}^p are simple connections of type 1.

References

- P. Crawley and R.P. Dilworth, Algebraic Theory of Lattices, Prentice Hall, Englewood Cliffs 1973.
- [2] G. Czédli, A.P. Huhn and E. T. Schmidt, Weakly independent sets in lattices, Algebra Universalis 20 (1985), 194–196.
- [3] V. Dlab, Lattice formulation of general algebraic dependence, Czechoslovak Math. J. 20 (95) (1970), 603–615.

- [4] B. Ganter and R. Wille, Formale Begriffsanalyse. Mathematische Grundlagen, Springer-Verlag, Berlin 1996; Eglish translation: Formal Concept Analysis. Mathematical Fundations, Springer-Verlag, Berlin 1999.
- [5] G. Grätzer, General Lattice Theory, Birkhäuser-Verlag, Basel 1998.
- [6] F. Machala, Join-independent and meet-independent sets in complete lattices, Order 18 (2001), 269–274.
- [7] F. Machala, Incidence structures of independent sets, Acta Univ. Palacki. Olomuc., Fac. Rerum Natur., Math. 38 (1999), 113–118.
- [8] F. Machala, Incidence structures of type (p,n), Czechoslovak Math. J. 53 (128) (2003), 9–18.
- [9] F. Machala, Special incidence structures of type (p, n), Acta Univ. Palack. Olomuc., Fac. Rerum Natur., Math. **39** (2000), 123–134.
- [10] F. Machala, Special incidence structures of type (p, n) Part II, Acta Univ. Palack. Olomuc., Fac. Rerum Natur., Math. 40 (2001), 131–142.
- [11] V. Slezák, On the special context of independent sets, Discuss. Math. Gen. Algebra Appl. 21 (2001), 115–122.
- [12] G. Szász, Introduction to Lattice Theory, Akadémiai Kiadó, Budapest 1963.

Received 21 January 2004 Revised 11 December 2004