Download PDF - On ternary semifields
ArticleOriginal scientific text
Title
On ternary semifields
Authors 1, 1
Affiliations
- Department of Pure Mathematics, University of Calcutta, 35, Ballygunge Circular Road, Kolkata-700019, India
Abstract
In this paper, we introduce the notion of ternary semi-integral domain and ternary semifield and study some of their properties.In particular we also investigate the maximal ideals of the ternary semiring Z¯₀.
Keywords
ternary semiring, prime ideal, maximal ideal, ternary semi-integral domain, ternary division semiring, ternary semifield
Bibliography
- T.K. Dutta and S. Kar, On regular ternary semirings, Advances in Algebras, World Scientific Publ., Singapore 2003, 343-355.
- T.K. Dutta and S. Kar, On the Jacobson radical of a ternary semiring, Southeast Asian Bull. Math. 28 (2004), 1-13.
- T.K. Dutta and S. Kar, On prime ideals and prime radical of ternary semirings, Bull. Calcutta Math. Soc. 97 (2005), to appear.
- T.K. Dutta and S. Kar, On semiprime ideals and irreducible ideals of ternary semirings, (in preparation).
- J.S. Golan, Semirings and their Applications, Kluwer Academic Publishers, Dordrecht 1999.
- U. Hebisch and H.J. Weinert, Semirings - Algebraic Theory and Applications in Computer Science, World Scientific Publ. Co. Inc., River Edge, NJ, 1998.
- D.H. Lehmer, A ternary analogue of abelian groups, Amer. J. Math. 59 (1932), 329-338.
- W.G. Lister, Ternary rings, Trans. Amer. J. Math. Soc. 154 (1971), 37-55.
- J. Łoś, On the extending of models I, Fund. Math. 42 (1955), 38-54.
- M.L. Santiago, Some contributions to the study of ternary semigroups and semiheaps, Ph.D. Thesis, University of Madras 1983.
- M.K. Sen and M.R. Adhikari, On maximal k-ideals of semirings, Proc. Amer. Math. Soc. 118 (1993), 699-703.