PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2004 | 24 | 2 | 153-176
Tytuł artykułu

Commutation of operations and its relationship with Menger and Mann superpositions

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article considers a problem from Trokhimenko paper [13] concerning the study of abstract properties of commutations of operations and their connection with the Menger and Mann superpositions. Namely, abstract characterizations of some classes of operation algebras, whose signature consists of arbitrary families of commutations of operations, Menger and Mann superpositions and their various connections are found. Some unsolved problems are given at the end of the article.
Twórcy
  • Tymirazieva str., 27, apt. 6, Vinnytsia 21001, Ukraine
Bibliografia
  • [1] V.D. Belousov, Conjugate operations (Russian), 'Studies in General Algebra' (Russian), Akad. Nauk Moldav. SSR Kishinev (Chishinau) 1965, 37-52.
  • [2] V.D. Belousov, Balanced identities in quasigroups, (Russian) Mat. Sb. (N.S.) 70 (112) (1966), 55-97.
  • [3] V.D. Belousov, Systems of orthogonal operations (Russian), Mat. Sb. (N.S.) 77 (119) (1968), 38-58.
  • [4] K. Denecke and P. Jampachon, N-solid varietes of free Menger algebras of rank n, Eastwest J. Math. 5 (2003), 81-88.
  • [5] W.A. Dudek and V.S. Trokhimenko, Functional Menger P-algebras, Comm. Algebra 30 (2003), 5921-5931.
  • [6] K. Głazek, Morphisms of general algebras without fixed fundamental operations, 'General Algebra and Applications', Heldermann-Verlag, Berlin 1993, 89-112.
  • [7] K. Głazek, Algebras of Algebraic Operations and Morphisms of Algebraic System (Polish), Wydawnictwo Uniwersytetu Wroc awskiego, Wrocaw 1994 (146 pp.).
  • [8] A. Knoebel, Cayley-like representations are for all algebras, not morely groups, Algebra Universalis 46 (2001), 487-497.
  • [9] H. Mann, On orthogonal latin squares, Bull. Amer. Math. Soc. 50 (1944), 249-257.
  • [10] K. Menger, The algebra of functions: past, present and future, Rend. Mat. Appl. 20 (1961), 409-430.
  • [11] M.B. Schein and V.S. Trohimenko, Algebras of multiplace functions, Smigroup Forum 17 (1979), 1-64.
  • [12] F.N. Sokhatsky, An abstract characterization (2,n)-semigroups of n-ary operations (Russian), Mat. Issled. no. 65 (1982), 132-139.
  • [13] V.S. Trokhimenko, On algebras of binary operations (Russian), Mat. Issled. no. 24 (1972), 253-261.
  • [14] T. Yakubov, About (2,n)-semigroups of n-ary operations (Russian), Izvest. Akad. Nauk Moldav. SSR (Bul. Akad. Stiince RSS Moldaven) 1974, no. 1, 29-46.
  • [15] K.A. Zaretski, An abstract characterization of the bisemigroup of binaryoperations (Russian), Mat. Zametki 1 (1965), 525-530.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1082
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.