ArticleOriginal scientific text

Title

Orthorings

Authors 1, 2

Affiliations

  1. Palacký University, Olomouc, Department of Algebra and Geometry, Tomkova 40, 77900 Olomouc, Czech Republic
  2. Vienna University of Technology, Institute of Discrete Mathematics and Geometry, Research Unit Algebra, Wiedner Hauptstraß e 8-10, 1040 Vienna, Austria

Abstract

Certain ring-like structures, so-called orthorings, are introduced which are in a natural one-to-one correspondence with lattices with 0 every principal ideal of which is an ortholattice. This correspondence generalizes the well-known bijection between Boolean rings and Boolean algebras. It turns out that orthorings have nice congruence and ideal properties.

Keywords

ortholattice, generalized ortholattice, sectionally complemented lattice, orthoring, arithmetical variety, weakly regular variety, congruence kernel, ideal term, basis of ideal terms, subtractive term

Bibliography

  1. G. Birkhoff, Lattice Theory, third edition, AMS Colloquium Publ. 25, Providence, RI, 1979.
  2. I. Chajda, Pseudosemirings induced by ortholattices, Czechoslovak Math. J. 46 (1996), 405-411.
  3. I. Chajda and G. Eigenthaler, A note on orthopseudorings and Boolean quasirings, Österr. Akad. Wiss. Math.-Natur. Kl. Sitzungsber. II 207 (1998), 83-94.
  4. I. Chajda, G. Eigenthaler and H. Länger, Congruence Classes in Universal Algebra, Heldermann Verlag, Lemgo 2003.
  5. I. Chajda and H. Länger, Ring-like operations in pseudocomplemented semilattices, Discuss. Math. Gen. Algebra Appl. 20 (2000), 87-95.
  6. I. Chajda and H. Länger, Ring-like structures corresponding to MV-algebras via symmetric difference, Österr. Akad. Wiss. Math.-Natur. Kl. Sitzungsber. II, to appear.
  7. I. Chajda, H. Länger and M. Maczyński, Ring-like structures corresponding to generalized orthomodular lattices, Math. Slovaca 54 (2004), 143-150.
  8. G. Dorfer, A. Dvurecenskij and H. Länger, Symmetric difference in orthomodular lattices, Math. Slovaca 46 (1996), 435-444.
  9. D. Dorninger, H. Länger and M. Maczyński, The logic induced by a system of homomorphisms and its various algebraic characterizations, Demonstratio Math. 30 (1997), 215-232.
  10. D. Dorninger, H. Länger and M. Maczyński, On ring-like structures occurring in axiomatic quantum mechanics, Österr. Akad. Wiss. Math.-Natur. Kl. Sitzungsber. II 206 (1997), 279-289.
  11. D. Dorninger, H. Länger and M. Maczyński, On ring-like structures induced by Mackey's probability function, Rep. Math. Phys. 43 (1999), 499-515.
  12. D. Dorninger, H. Länger and M. Maczyński, Lattice properties of ring-like quantum logics, Intern. J. Theor. Phys. 39 (2000), 1015-1026.
  13. D. Dorninger, H. Länger and M. Maczyński, Concepts of measures on ring-like quantum logics, Rep. Math. Phys. 47 (2001), 167-176.
  14. D. Dorninger, H. Länger and M. Maczyński, Ring-like structures with unique symmetric difference related to quantum logic, Discuss. Math. General Algebra Appl. 21 (2001), 239-253.
  15. G. Grätzer, General Lattice Theory, second edition, Birkhäuser Verlag, Basel 1998.
  16. J. Hedlíková, Relatively orthomodular lattices, Discrete Math. 234 (2001), 17-38.
  17. M. F. Janowitz, A note on generalized orthomodular lattices, J. Natur. Sci. Math. 8 (1968), 89-94.
  18. H. Länger, Generalizations of the correspondence between Boolean algebras and Boolean rings to orthomodular lattices, Tatra Mt. Math. Publ. 15 (1998), 97-105.
  19. H. Werner, A Mal'cev condition for admissible relations, Algebra Universalis 3 (1973), 263.
Pages:
137-147
Main language of publication
English
Received
2004-03-02
Accepted
2004-06-09
Published
2004
Exact and natural sciences