This paper presents some manner of characterization of Boolean rings. These algebraic systems one can also characterize by means of some distributivities satisfied in GBbi-QRs.
Department of Applied Mathematics, Warsaw Agricultural University (WAU; SGGW), ul. Nowoursynowska 166, PL-02-766 Warsaw
Bibliografia
[1] I. Chajda, Pseudosemirings induced by ortholattices, Czechoslovak Math. J. 46 (1996), 405-411.
[2] I. Chajda and G. Eigenthaler, A note on orthopseudorings and Boolean quasirings, Österreich. Akad. Wiss. Math.-Natur. Kl. Sitzungsber. II 207 (1998), 83-94.
[3] G. Dorfer, A. Dvurecenskij and H. Länger, Symmetric difference in orthomodular lattices, Math. Slavaca 46 (1996). doi: 435-444
[4] D. Dorninger, Sublogics of ring-like quantum logics, Tatra Mt. Math. Publ. 15 (1998), 75-83.
[5] D. Dorninger, H. Länger and M. Maczyński, The logic induced by system of homomorphisms and its various algebraic characterizations, Demonstratio Math. 30 (1997), 215-232.
[6] D. Dorninger, H. Länger and M. Maczyński, On ring-like structures occurring in axiomatic quantum mechanics, Österreich. Akad. Wiss. Math.-Natur. Kl. Sitzungsber. II 206 (1997), 279-289.
[7] D. Dorninger, H. Länger and M. Maczyński, Lattice properties of ring-like quantum logics, Internat. J. Theoret. Phys. 39 (2000), 1015-1026.
[8] D. Dorninger, H. Länger and M. Maczyński, On ring-like structures induced by Mackey's probability function, Rep. Math. Phys. 43 (1999), 499-515.
[9] H. Länger, Generalizations of the correspondence between Boolean algebras and Boolean rings to orthomodular lattices, Tatra Mt. Math. Publ. 15 (1998), 97-105.
[10] H.O. Pflugfelder, Quasigroups and Loops: Introduction, Heldermann Verlag, Berlin 1990.