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1. Introduction

Generalized Boolean bi-quasirings (GBbi-QRs for short) are generalizations
of Boolean rings and arise as a result of considering systems of experimen-
tal propositions occuring in classical and quantum physics. On the one
hand, the structure of such systems can be described in the framework of
lattices which leads to so-called quantum logics. On the other hand, they
can be represented by means of ring-like structures. These two possibilities
of describing such propositional systems generalize the well-known analogy
existing between the variety of Boolean algebras and that of Boolean rings.
For more details concerning generalizations of Boolean rings readers are re-
ferred to [5], [4], [9] or [8]. Similar algebraic systems were also considered in
the papers [1] - [3].
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Recall the well-known (see, e.g., [10]) notion of a quasigroup:

Definition 1.1. A groupoid (A; ◦) (where A is a non-empty set and o is a
binary operation defined on A) is called a quasigroup if for an arbitrary pair
of elements x, y ∈ A, there is a unique pair of elements x1, y1 ∈ A, so that
x ◦ x1 = y and y1 ◦ x = y (unique solvability).

Every GBbi-QR can be treated as a quasigroup with an additional operation.
More precisely, we introduce the following concept.

Definition 1.2. An algebra (R; +, ·) of type (2, 2) is called a generalized
Boolean bi-quasiring (GBbi-QR, for short) if there are two distinct elements
0, 1 ∈ R such that for all x, y, z ∈ R the following laws hold:

(1) For every pair (x, y) ∈ R2 there is a unique pair (x1, y1) ∈ R2 such
that x + x1 = y and y1 + x = y,

(2) x + 0 = x = 0 + x,

(3) x + 1 = 1 + x,

(4) xy = yx,

(5) x1 = x,

(6) x0 = 0,

(7) xx = x,

(8) x(yz) = (xy)z,

(9) 1 + (1 + xy)(1 + x) = x.

We can notice that if we omit axiom (1) and replace axioms (2) and (3) by
the axioms:

(2’) x + y = y + x

and

(3’) x + 0 = x
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with the axioms (4) − (9) unchanged, then, according to [5], we obtain a
generalized Boolean quasiring (GBQR, for short).

We denote by the symbols + and · the binary operations of addition
and multiplication, respictively.

The axioms of a GBbi-QR imply 1 + (1 + x) = 1 + (1 + xx)(1 + x) = x
and (1 + xy)(1 + x) = 1 + (1 + (1 + xy)(1 + x)) = 1 + x.

Examples of GBbi-QRs

1. Let R = {0, a, b, c, d, 1}, where the operations of + and · are defined by
the following tables:

+ 0 a b c d 1
0 0 a b c d 1
a a d 0 b 1 c

b b 0 c 1 a d

c c b 1 d 0 a

d d 1 a 0 c b

1 1 c d a b 0

· 0 a b c d 1
0 0 0 0 0 0 0
a 0 a 0 a 0 a

b 0 0 b 0 b b

c 0 a 0 c 0 c

d 0 0 b 0 d d

1 0 a b c d 1

Then (R; +, ·) is a GBbi-QR and the semilattice (R; ·) is isomorphic to
a meet-semi lattice of the bounded 6-element lattice with two atoms
a and b.
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2. Let R = {0, a, b, c, d, e, f, g, h, 1}, where the operations of + and · are
defined by the following tables:

+ 0 a b c d e f g h 1
0 0 a b c d e f g h 1
a a g 0 b c h 1 d f e

b b c h d a g e 0 1 f

c c f d h e b 0 1 a g

d d 0 e 1 b f c a g h

e e 1 c 0 g d h f b a

f f d g e 1 0 a h c b

g g h a f 0 1 d b e c

h h b 1 a f c g e 0 d

1 1 e f g h a b c d 0

· 0 a b c d e f g h 1
0 0 0 0 0 0 0 0 0 0 0
a 0 a 0 a 0 0 a 0 0 a

b 0 0 b b 0 b 0 0 0 b

c 0 a b c 0 b a 0 0 c

d 0 0 0 0 d 0 0 0 0 d

e 0 0 b b 0 e g g 0 e

f 0 a 0 a 0 g f g 0 f

g 0 0 0 0 0 g g g 0 g

h 0 0 0 0 0 0 0 0 h h

1 0 a b c d e f g h 1

Then (R; +, ·) is a GBbi-QR and the semilattice (R; ·) is isomorphic
to a meet-semilattice of the horizontal sum of 8-element and 2-element
Boolean algebras.
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2. Characterization of Boolean rings in the
framework

of generalized Boolean bi-quasirings

It is known that Boolean rings are derived from Boolean algebras. In this
section it will be proved that Boolean rings can also be characterized by
means of generalized Boolean bi-quasirings with some distributivities.

Let R = (R; +, ·) be an arbitrary GBbi-QR. We define in R the following
relation:

xCy
def⇐⇒ y (1 + x) = y + xy

(xCy denotes: “x commutes with y”, where x, y ∈ R).

The relation C has already been considered in the theory of GBQRs (see [5],
Theorem 4.11, and [6], Lemma 4.1). Because for an arbitrary GBbi-QR
we can determine the lattice induced by our system in the same way as
the lattice induced by an arbitrary GBQR (see for instance [5]), so the
commutativity of each pair of elements of GBbi-QR also implies the com-
mutativity of these elements in the lattice induced by it. Lemma 4.1 oc-
curing in [6] one can quote also in this case, whereas taking into consider-
ation Theorem 5.1 in [8], we have genuinity of Theorem 4.11 of [5] in our
situation, too.

The proof of the main theorem in this section is based on three technical
lemmas. The following theorem (see [5]) is also used in the proof.

Theorem 2.1. If R = (R; +, ·) is a GBQR in which for all x, y ∈ R we
have:

a) x(1 + y) = x + xy,

b) x + y = (1 + (1 + x)(1 + y))(1 + xy),

then R is a Boolean ring.
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Now we state and prove the lemmas that have been mentioned earlier.

Lemma 2.1. Let R be an arbitrary GBbi-QR, and let x, y, z ∈ R satisfy
the following conditions:

(a) x Cy,

(b) x Cz,

(c) xy = xz,

(d) (1 + x)y = (1 + x)z,

then y = z.

Proof. If (1+x)y = (1+x)z, then y+xy = z+xz, therefore y+xy = z+xy
and it means (by (1)) that y = z.

Lemma 2.2. If R is a GBbi-QR and for each x, y ∈ R we have:

(?) x(1 + y) = x + xy,

then x + x = 0, it means that R is of characteristic 2.

Proof. For x = 0 we obtain by (9) that 1 + 1 = 0. For y = 1, we have
x(1 + 1) = x + x, by (?), and so x + x = 0, by (6).

Lemma 2.3. If R is a GBbi-QR in which for arbitrary x, y ∈ R the follow-
ing laws hold:

1. x(1 + y) = x + xy,

2. x(x + y) = x + xy and (y + x)x = xy + x,

3. (1 + x)(x + y) = (1 + x)(y + x),

then xy + x = x + xy.
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Proof. Note that xy C(x + xy) and xy C(xy + x). Now, xy(x + xy) =
xy + xy = 0 and xy(xy + x) = xy + xy = 0, by Lemma 2.2, whereas
(xy + 1)(x + xy) = (xy + 1)(xy + x), therefore x + xy = xy + x, by
Lemma 2.1.

Now we prove our main theorem.

Theorem 2.2. If R is a GBbi-QR and R satisfies the following conditions:

(I) x(1 + y) = x + xy

(IIa) x(x + y) = x + xy and (IIb) (y + x)x = xy + x,

(III) (1 + x)(x + y) = y(1 + x) = (1 + x)(y + x),

for arbitrary x, y ∈ R, then R is a Boolean ring.

Remark 2.1. The last condition is a special case of the distributive law
since in the above Theorem should be written in the following form:

(1 + x)(x + y) = x(1 + x) + y(1 + x)

and

(1 + x)(y + x) = y(1 + x) + x(1 + x).

But x (1 + x) = 0, by Lemma 2.2.

Proof of Theorem 2.2. In order to prove Theorem 2.2, it is sufficient
by Theorem 2.1 and Lemma 2.2 to show that

1) x + y = y + x

and

2) x + y = (1 + (1 + x)(1 + y))(1 + xy)

Concerning 1): We have x C(x + y) and x C(y + x), x(x + y) = x + xy and
x(y + x) = xy + x = x + xy, by Lemma 2.3, so x(x + y) = x(y + x).
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On the other hand, (1 + x)(x + y) = (1 + x)(y + x), and so x + y = y + x,
by Lemma 2.1.

Concerning 2): We have x C(1 + (1 + x)(1 + y))(1 + xy) and
x(1 + (1 + x)(1 + y))(1 + xy) = (x + x(1 + x)(1 + y))(1 + xy) = x + xy
and x + xy = x(x + y).

We can also notice that

(1 + x)(1 + (1 + x)(1 + y))(1 + xy)

= ((1 + x) + (1 + x)(1 + x)(1 + y))(1 + xy)
by (7)
=

= ((1 + x) + (1 + x)(1 + y))(1 + xy)

= (1 + x)(1 + (1 + y))(1 + xy) = (1 + x)y(1 + xy)

= (1 + x)(y + xy) = (y + xy) + x(y + xy)

= (y + xy) + (xy + xy) = (y + xy) + 0 = y + xy = y(1 + x).

We also have

(1 + x)(x + y) = y(1 + x), hence (1 + x)(x + y)

= (1 + x)(1 + (1 + x)(1 + y))(1 + xy).

Now by Lemma 2.1, we obtain that

x + y = (1 + (1 + x)(1 + y))(1 + xy).

Still open problem is the following:
if all conditions (I)-(III) are necessary in Theorem 2.2?

Let us consider the following examples:
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Example 2.1. Consider R = (R; +, ·) defined by:

+ 0 a b c d e f 1
0 0 a b c d e f 1
a a 0 f e b c 1 d

b b f 0 1 c d a e

c c e d 0 1 a b f

d d 1 c b 0 f e a

e e c 1 a f 0 d b

f f b a d e 1 0 c

1 1 d e f a b c 0

· 0 a b c d e f 1
0 0 0 0 0 0 0 0 0
a 0 a 0 0 0 a a a

b 0 0 b 0 b 0 b b

c 0 0 0 c c c 0 c

d 0 0 b c d c b d

e 0 a 0 c c e a e

f 0 a b 0 b a f f

1 0 a b c d e f 1

The semilattice (R; ·) is isomorphic to the meet semilattice of an 8-element
Boolean algebra. The above example shows that the equality: x(1 + y) =
x + xy holds in R, but R = (R; +, ·) is not a Boolean ring, because + is not
commutative.
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in axiomatic quantum mechanics, Österreich. Akad. Wiss. Math.-Natur. Kl.
Sitzungsber. II 206 (1997), 279–289.

[7] D. Dorninger, H. Länger and M. Ma̧czyński, Lattice properties of ring-like
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