ArticleOriginal scientific text
Title
On interval decomposition lattices
Authors 1, 2
Affiliations
- Institute of Mathematics, Tampere University of Technology, 33101 Tampere, Finland
- Institute of Mathematics, University of Miskolc, 3515 Miskolc-Egyetemváros, Hungary
Abstract
Intervals in binary or n-ary relations or other discrete structures generalize the concept of interval in an ordered set. They are defined abstractly as closed sets of a closure system on a set V, satisfying certain axioms. Decompositions are partitions of V whose blocks are intervals, and they form an algebraic semimodular lattice. Lattice-theoretical properties of decompositions are explored, and connections with particular types of intervals are established.
Keywords
interval, closure system, modular decomposition, semimodular lattice, partition lattice, strong set, lexicographic sum
Bibliography
- H. Bachmann, Transfinite Zahlen, Springer-Verlag, Berlin 1967.
- A. Bastiani, Théorie des Ensembles, Centre de Documentation Universitaire, Paris 1970.
- P. Crawley and R.P. Dilworth, Algebraic Theory of Lattices, Prentice-Hall Inc., Englewood Cliffs, NJ, 1973.
- W. Dörfler, Ueber die X-Summe von gerichteten Graphen, Arch. Math. 22 (1971), 24-36.
- W. Dörfler and W. Imrich, Über die X-Summe von Mengensystemen, Colloq. Soc. Math. J. Bolyai, vol. 4 ('Combinatorial Theory and its Applications, I.'), North-Holland, Amsterdam 1970, 297-309.
- S. Foldes, Relation denses et dispersées: généralisation d'un théorème de Hausdorff, C.R. Acad. Sc. Paris A 277 (1973), 269-271.
- S. Foldes, On intervals in relational structures, Z. Math. Logik Grundlag. Math. 26 (1980), 97-101.
- S. Foldes, Lexicographic sums of ordered sets and hypergroupoids, 'Algebraic Hyperstructures and Applications', World Scientific Publ., Teaneck, NJ, 1991, 97-101.
- R. Fraissé, Course of Mathematical Logic, Vol. I, Reidel, Dordrecht 1973.
- R. Fraissé, Present problems about intervals in relation theory and logic, 'Non-classical Logics, Model theory and Computability', North-Holland, Amsterdam 1977, 179-200.
- R. Fraissé, Theory of Relations, Revised Edition, Elsevier, Amsterdam 2000.
- T. Gallai, Transitiv orientierbare graphen, Acta Math. Acad. Sci. Hungar. 18 (1967), 25-66.
- D.W.H. Gillam, A concrete representation theorem for intervals of multirelations, Z. Math. Logik Grundlag. Math. 24 (1978), 463-466.
- A. Gleyzal, Order types and structure of orders, Trans. Amer. Math. Soc. 48 (1950), 451-466.
- G. Grätzer, General Lattice Theory, Academic Press, New York 1978.
- M. Habib and M.C. Maurer, On X-join decomposition for undirected graphs, Discrete Appl. Math. 1 (1979), 201-207.
- F. Hausdorff, Grundzüge der Mengenlehre, Veit u. Co., Leipzig 1914, reprinted Chelsea, New York 1949.
- F. Hausdorff, Grundzüge einer Theorie der geordneten Mengen, Math. Ann. 65 (1918), 435-505.
- P. Ille, L'intervalle relationnel et ses généralisations, C.R. Acad. Sc. Paris Ser. I Math. 306 (1988), 1-4.
- P. Ille, Clôture intervallaire et extension logique d'une relation, Z. Math. Logik Grundlag. Math. 36 (1990), 217-227.
- P. Ille, L'ensemble des intervalles d'une multirelation binaire et reflexive, Z. Math. Logik Grundlag. Math. 37 (1991), 227-256.
- R.M. McConnell and J.P. Spinrad, Modular decomposition and transitive orientation, Discrete Math. 201 (1999), 189-241.
- R.H. Möhring, Algorithmic aspects of the substitution decomposition in optimization over relations, set systems and Boolean functions, Ann. Oper. Res. 4 (1985), 195-225.
- R.H. Möhring and F.J. Radermacher, Substitution decomposition of discrete structures and connections to combinatorial optimization, Ann. Discrete Math. 19 (1984), 257-355.
- G. Sabidussi, Graph derivatives, Math. Zeitschrift 76 (1961), 385-401.
- B.S.W. Schröder, Ordered Sets. An Introduction, Birkhäuser, Basel 2002.
- M. Stern, Semimodular Lattices, Theory and Applications, Cambridge University Press, Cambridge 1999.
- W.T. Trotter, Combinatorics and Partially Ordered Sets. Dimension Theory, Johns Hopkins University Press, Baltimore, MD, 1992.
- I. Zverovich, Extension of hereditary classes with substitutions, Discrete Appl. Math. 128 (2003), 487-509.